From b9d9603522ceae8e328eab4d2c09388dca6ac6bb Mon Sep 17 00:00:00 2001
From: Raimon Tolosana-Delgado <tolosa53@fwg206.ad.fz-rossendorf.de>
Date: Wed, 23 Jun 2021 20:25:09 +0200
Subject: [PATCH] validation bug corrected

---
 DESCRIPTION              |    2 +-
 NEWS.md                  |    6 +-
 R/gmValidationStrategy.R |   21 +-
 R/variograms.R           | 2314 +++++++++++++++++++-------------------
 cran-comments.md         |   39 +-
 src/gmGeostats.c         |    1 +
 6 files changed, 1199 insertions(+), 1184 deletions(-)

diff --git a/DESCRIPTION b/DESCRIPTION
index 8c06d06..575aded 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,5 +1,5 @@
 Package: gmGeostats
-Version: 0.10-7.9003
+Version: 0.10-7.9004
 Date: 2020-10-05
 Title: Geostatistics for Compositional Analysis
 Authors@R: c(person(given = "Raimon", 
diff --git a/NEWS.md b/NEWS.md
index c6d5443..08ad797 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,9 +1,13 @@
+# gmGeostats 0.10.7.9004
+
+* (2021-06-23) bug in validate.NfoldCrossValidation() corrected
+
 # gmGeostats 0.10.7.9003
 
 * (2021-04-08) exported turning bands for direct usage
 * (2020-10-01) bug in turning bands spherical variogram corrected
 
-# gmGeostats 0.10.7
+#  gmGeostats 0.10.7
 
 * (2020-09-27) updated references in generalised diagonalisations; improved/reimplemented `as.logratioVariogram()` and `as.logratioVariogramAnisotropy()` methods; minor edits at `plot.logratioVariogramAnisotropy()` and `variogramModelPlot.logratioVariogram()`
 * (2020-09-24) openMP pragmas enclosed, to improve portability 
diff --git a/R/gmValidationStrategy.R b/R/gmValidationStrategy.R
index 7fd58d0..256a2bf 100644
--- a/R/gmValidationStrategy.R
+++ b/R/gmValidationStrategy.R
@@ -98,15 +98,18 @@ validate.LeaveOneOut = function(object, strategy, ...){
 #' @method validate NfoldCrossValidation
 #' @export
 validate.NfoldCrossValidation = function(object, strategy, ...){
+  # manage "gstat" case
   if("gstat" %in% class(object)){
     warning("validate: object provided is of class 'gstat', attempting 'gstat.cv(..., remove.all=TRUE, all.residuals=TRUE)'")
     return(gstat::gstat.cv(object, nfold=strategy$nfolds, remove.all = TRUE, all.residuals = TRUE))
   }
+  # manage "gmSpatialModel" case
   object = try(as.gmSpatialModel(object))
   if(class(object)=="try-error") stop("validate.NfoldCrossValidation: provided object not interpretable")
   # interpret the information about the n-folds provided
   n = strategy$nfolds
   m = nrow(object@data)
+  nms = rownames(object)
   if(length(n)==1){
     nmax = n
     n0 = rep(1:n, each=ceiling(m/n))
@@ -115,21 +118,27 @@ validate.NfoldCrossValidation = function(object, strategy, ...){
     nmax = max(n)
   }
   if(length(n)!=m) stop("validate.NfoldCrossValidation: provided n-fold info not interpretable (should be either an integer, or a grouping factor)")
+  # one fold validation function
   myfun = function(i){
     tk = (n==i)
     object0 = object
-    object0@data=object@data[!tk,]
-    object0@coords=object@coords[!tk,]
-    rs = predict(object0, newdata = object@coords[tk,])
+    object0@data=object@data[!tk,, drop=FALSE]
+    object0@coords=object@coords[!tk,, drop=FALSE]
+    rs = predict(object0, 
+                 newdata = sp::SpatialPoints(coords = object@coords[tk,, drop=FALSE], 
+                                         proj4string = sp::CRS(sp::proj4string(object)), 
+                                         bbox=sp::bbox(object))
+                 )
   }
+  # apply to each data slice
   requireNamespace("foreach", quietly = TRUE)
   if(!strategy$doAll) return(myfun(1))
   i = 1:nmax
-  res = foreach(i=i, .combine ="list") %dopar% myfun(i)
-  res = unsplit(res, f=n)
+  res = foreach(i=i, .combine ="rbind") %dopar% myfun(i)
+  # reorder and return
+  res = res[nms,] 
   return(res)
 }
 
 
 
-
diff --git a/R/variograms.R b/R/variograms.R
index 012ccdd..0026e92 100644
--- a/R/variograms.R
+++ b/R/variograms.R
@@ -1,1157 +1,1157 @@
-#### theoretical variogram ---------------------
-
-#' gmGeostats Variogram models
-#' set up a D-variate variogram models 
-#'
-#' @param type constant indicating the model of correlation function
-#' @param nugget (DxD)-matrix for the nugget effect
-#' @param sill (DxD)-matrix for the partial sills of the correlation function
-#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details)
-#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc)
-#'
-#' @return an object of class "gmCgram" containing the linear model of corregionalization
-#' of the nugget and the structure given. 
-#' @details The argument `type` must be an integer indicating the model to be used. 
-#' Some constants are available to make reading code more understandable. That is, you can 
-#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce
-#' a spherical model. The same applies for the following models: `vg.Gauss=0`; 
-#' `vg.Exp=vg.Exponential=2`. These constants are available after calling
-#' `data("variogramModels")`. 
-#' No other model is currently available, but this data object will be 
-#' regularly updated.
-#' The constant vector `gsi.validModels` contains all currently valid models.
-#' 
-#' Argument `anisRange` expects a matrix $M$ such that 
-#' \deqn{
-#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t
-#' }
-#' is the (square of) the lag distance to be fed into the correlation function.
-#' @family gmCgram 
-#' @export
-#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss 
-#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels
-#'
-#' @examples
-#' utils::data("variogramModels") # shortcut for all model constants
-#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' plot(vm)
-setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){
-  utils::data("variogramModels")
-  stopifnot(all(dim(sill)==dim(nugget)), 
-            ncol(sill)==nrow(sill),
-            type %in% gsi.validModels)
-  dim(sill) = c(1,dim(sill))
-  dim(anisRanges) = c(1,dim(anisRanges))
-  vgout <- list(type=type,
-                data=extraPar,
-                nugget=nugget,
-                sill=sill, #(nstru, nvar, nvar)
-                M=anisRanges     # these are "classical" ranges (i.e. distances)
-  )
-  class(vgout) = "gmCgram"
-  return(vgout)
-}
-
-
-
-#' Subsetting of gmCgram variogram structures
-#' 
-#' Extraction or combination of nested structures of a gmCgram object
-#'
-#' @param x `gmCgram` variogram object
-#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details)
-#' @param ... extra arguments for generic functionality
-#'
-#' @return a `gmCgram` variogram object with the desired structures only. 
-#' @details This function can be used to: extract the nugget (i=0), extract some 
-#' structures (i=indices of the structures, possibly including 0 for the nugget),
-#' or filter some structures out (i=negative indices of the structures to remove; 
-#' nugget will always removed in this case). If you want to extract "slots" or 
-#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
-#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together)
-#' is obtained by summing (+) two `gmCgram` objects.
-#' @export
-#' @method [[ gmCgram
-#' @family gmCgram functions
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' vm[[1]]
-"[[.gmCgram"<- function(x,i,...){
-  nG = dim(x$M)[3]
-  nD = dim(x$nugget)[1]
-  nSo = length(i)
-  nSi = dim(x$M)[1]
-  if(i==0){# case only nugget wanted
-    out = with(x, list(type=type[i], 
-                       data=data[i], 
-                       nugget=nugget, 
-                       sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)), 
-                       M=structure(M[1,,], dim=c(nSo, nG, nG))))
-  }else if( (0 %in% i) & !any(i<0)){
-    j = i[i>0] # case some structures wanted, including nugget
-    out = with(x, list(type=type[j], 
-                       data=data[j], 
-                       nugget=nugget, 
-                       sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)), 
-                       M=structure(M[j,,], dim=c(nSo-1, nG, nG))))
-  }else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted
-    if(all(i<0)) nSo = nSi-nSo
-    out = with(x, list(type=type[i], 
-                       data=data[i], 
-                       nugget=nugget*0, 
-                       sill=structure(sill[i,,], dim=c(nSo, nD, nD)), 
-                       M=structure(M[i,,], dim=c(nSo, nG, nG))))
-  }else{# unsolvable case
-    stop("index set i cannot merge 0 and negative numbers")
-  }
-  class(out) = class(x)
-  return(out)
-}
-
-
-#' Combination of gmCgram variogram structures
-#' 
-#' combination of nested structures of a gmCgram object
-#'
-#' @param x `gmCgram` variogram object
-#' @param y `gmCgram` variogram object
-#' @export
-#' @return The combined nested structures
-#' @method + gmCgram
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-"+.gmCgram" <- function(x,y) {
-  y = as.gmCgram(y)
-  stopifnot(class(y)=="gmCgram", 
-            dim(x$sill)[-1]==dim(y$sill)[-1],
-            dim(x$M)[-1]==dim(y$M)[-1])
-  myfun = function(A,B){
-    D = dim(A)[2]
-    nA = dim(A)[1]
-    nB = dim(B)[1]
-    dim(A) = c(nA, D^2)
-    dim(B) = c(nB, D^2)
-    out = rbind(A, B)
-    dim(out) = c(nA+nB, D, D)
-    return(out)
-  }
-  x$type = c(x$type, y$type)
-  x$data= c(x$data, y$data)
-  x$nugget = x$nugget + y$nugget
-  x$sill = myfun(x$sill, y$sill)
-  x$M = myfun(x$M, y$M)
-  return(x)
-}
-
-
-
-
-#' Subsetting of gmCgram variogram structures
-#' 
-#' Extraction of some variables of a gmCgram object
-#'
-#' @param x \code{gmCgram} variogram object
-#' @param i row-indices of the variables to be kept/removed
-#' @param j column-indices of the variables to be kept/removed (if only \code{i}
-#' is specified, \code{j} will be taken as equal to \code{i}!)
-#' @param ...  extra arguments for generic functionality
-#'
-#' @return a \code{gmCgram} variogram object with the desired variables only. 
-#' @details This function can be used to extract the model for a a subset of variables. 
-#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}. 
-#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give
-#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively  
-#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the
-#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")} 
-#' object, otherwise it will be a regular class \code{"gmCgram"} object.
-#' If you want to extract "slots" or 
-#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
-#' variogram matrices, use the `[`-notation.
-#' @export
-#' @method [ gmCgram
-#' @family gmCgram functions
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' vm[1,1]
-"[.gmCgram"<- function(x,i,j=i,...){
-  nDi = length(i)
-  nDj = length(j)
-  nS = dim(x$M)[1]
-  out = with(x, list(type=type, 
-                     data=data, 
-                     nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)), 
-                     sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)), 
-                     M=M))
-  class(out) = class(x)
-  if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out)))
-  return(out)
-}
-
-#' Length, and number of columns or rows
-#' 
-#' Provide number of structures, and nr of variables of an LMC of class gmCgram 
-#'
-#' @param x gmCgram object
-#'
-#' @return \code{length} returns the number of structures (nugget not counted), while
-#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will
-#' be also valid for the sill).
-#' @export
-#' @aliases ncol.gmCgram nrow.gmCgram
-#' @family gmCgram functions
-#'
-#' @method length gmCgram
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' length(vm)
-#' ncol(vm)
-#' nrow(vm)
-length.gmCgram = function(x)  length(x$type)
-if(!isGeneric("ncol")){
-  ncol <- function(x) UseMethod("ncol",x)
-  ncol.default <- base::ncol
-}
-if(!isGeneric("nrow")){
-  nrow <- function(x) UseMethod("nrow",x)
-  nrow.default <- base::nrow
-}
-ncol.gmCgram = function(x) ncol(x$nugget)
-nrow.gmCgram = function(x) nrow(x$nugget)
-
-
-#' Convert a gmCgram object to an (evaluable) function
-#' 
-#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function
-#'
-#' @param x a gmCgram object
-#' @param ... extra arguments for generic functionality
-#'
-#' @return a \code{function} that can be evaluated normally, with an argument \code{X}
-#' and possibly another argument \code{Y}; both must have the same number of columns 
-#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}).
-#' @export
-#' @method as.function gmCgram
-#' @family gmCgram functions
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' vgf = as.function(vm)
-#' (h = rbind(c(0,1), c(0,0), c(1,1)))
-#' vgf(h)
-#' predict(vm, h)
-as.function.gmCgram = function(x,...){
-    f <- function(X,Y=X){
-      if(is(X,"Spatial")) X = sp::coordinates(X)
-      X = as.matrix(X)
-      if(is(Y,"Spatial")) Y = sp::coordinates(Y)
-      Y = as.matrix(Y)
-      stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3])
-      ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE)
-      o = gsi.calcCgram(X,Y,x,ijEqual)
-      return(o)
-    }
-  return(f)
-}
-
-#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates
-#' @param object gmCgram object
-#' @param newdata matrix, data.frame or Spatial object containing coordinates
-#' @method predict gmCgram
-#' @export
-predict.gmCgram = function(object, newdata, ...){
-  as.function(object)(X=newdata)
-}
-
-
-#' Convert theoretical structural functions to gmCgram format 
-#' 
-#' Convert covariance function or variogram models to the format gmCgram 
-#' of package gmGeostats
-#' 
-#' @param m model to be converted
-#' @param ... further parameters
-#'
-#' @return the covariance/variogram model, recasted to class \code{gmCgram}. 
-#' This is a generic function. Methods exist for objects of class
-#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList}
-#' (as provided by package \code{gstat}).  
-#' @export
-#' @family gmCgram functions
-as.gmCgram <- function(m, ...)  UseMethod("as.gmCgram",m) 
-
-#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format 
-#' @method as.gmCgram default
-#' @export
-as.gmCgram.default <- function(m,...) m 
-
-
-
-#' Draw cuves for covariance/variogram models
-#' 
-#' Represent a gmCgram object as a matrix of lines in several plots
-#'
-#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions
-#' @param xlim.up range of lag values to use in plots of the upper triangle
-#' @param xlim.lo range of lag values to use in plots of the lower triangle
-#' @param vdir.up geograohic directions to represent in the upper triangle 
-#' @param vdir.lo geograohic directions to represent in the lower triangle
-#' @param xlength number of discretization points to use for the curves (defaults to 200)
-#' @param varnames string vector, variable names to use in the labelling of axes
-#' @param add logical, should a new plot be created or stuff be added to an existing one?
-#' @param commonAxis logical, is a common Y axis for all plots in a row desired?
-#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted?   
-#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
-#' defaults to TRUE
-#' @param ... further graphical parameters for the plotting function
-#'
-#' @return This function is called for its side effect of producing a plot: the plot will be
-#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function
-#' invisibly returns the graphical parameters that were active before starting the plot. Hence, 
-#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))},
-#' or \code{plot(x, closeplot=TRUE, ...)}.
-#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference
-#' is only relevant when working with the screen graphical device. 
-#' @export 
-#' @method plot gmCgram
-#' @family gmCgram functions
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
-#' vm = v1+v2
-#' plot(vm)
-#' plot(vm, cov=FALSE)
-plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget), 
-                        add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){
-  Dg = dim(x$M)[2]
-  Ns = dim(x$M)[1]
-  Dv = dim(x$nugget)[1]
-  if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
-  if(is.null(vdir.up) & is.null(vdir.lo)){
-    vdir.lo = rep(0, Dg)
-    vdir.lo[1] = 1
-    dim(vdir.lo) = c(1,Dg)
-    if(!is.isotropic(x)){
-      aux = diag(Dg)
-      if(Dg==3){
-        vdir.lo = aux[3,]
-        vdir.up = aux[-3,]
-      }else
-        vdir.lo = aux
-    }
-  }
-  if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up))
-  if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo))
-  fk = c(sqrt(3),1,3)[x$type+1]*1.25  # range to effective range factor expansion
-  if(is.null(xlim.up)){
-    if(add){
-      par(mfg=c(1,2))
-      xlim.up = par()$usr[1:2]
-    }else if(!is.null(vdir.up)){
-      maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,])))
-      # here we must compute the max M projected on vd.up
-      xlim.up = c(0, max(fk*maxdist))
-    }
-  }
-  if(is.null(xlim.lo)){
-    if(add){
-      par(mfg=c(2,1))
-      xlim.lo = par()$usr[1:2]
-    }else if(!is.null(vdir.lo)){
-      maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,])))
-      # here we must compute the max M projected on vd.lo
-      xlim.lo = c(0, max(fk*maxdist))
-    }
-  }
-  if(!is.null(xlim.up)){
-    xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength)
-  }else{ xseq.up=NULL}
-  if(!is.null(xlim.lo)){
-    xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength)
-  }else{ xseq.lo=NULL}
-  
-  opar = par()
-  opar = par_remove_readonly(opar)
-  
-  if(closeplot) on.exit(par(opar))
-  
-  getVdens = function(vdir, xseq){
-    if(is.null(vdir)|is.null(xseq)) return(NULL)
-    Vdens = sapply(1:nrow(vdir), function(k){
-      X = outer(xseq, vdir[k,])
-      Y = X[1,,drop=F]*0
-      gsi.calcCgram(X,Y,x,FALSE)
-    })
-    dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir))
-    if(!cov){
-      # convert to variogram if cov=FALSE
-      Y = matrix(rep(0,Dg), ncol=Dg)
-      C0 = gsi.calcCgram(Y,Y,x,FALSE)
-      dim(C0) = c(Dv,Dv)
-      Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances
-    }
-    return(Vdens)    
-  }
-  Vdens.up = getVdens(vdir.up, xseq.up)
-  Vdens.lo = getVdens(vdir.lo, xseq.lo)
-  
-  myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...)
-  if(add) myplot = function(...) matlines(...)
-  if(!add){
-    par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
-    myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") 
-  }
-  for(i in 1:Dv){
-      for(j in 1:Dv){
-        if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){
-            par(mfg=c(i+1,j,Dv+1,Dv+1))
-            ylim = range(Vdens.lo[,,j,])
-            if(commonAxis) ylim=range(Vdens.lo[,,j,])
-            myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...)
-            if(i==j & !add){
-              axis(side = 3)
-              mtext(text=varnames[i], side = 3, line=3)
-              mtext(text=varnames[i], side = 4, line=3)
-            }
-        }
-        if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){
-            par(mfg=c(i,j+1,Dv+1,Dv+1))
-            ylim = range(Vdens.up[,,j,])
-            if(commonAxis) ylim=range(Vdens.up[,,j,])
-            myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...)
-            if(i==j & !add){
-              axis(side = 1)
-              mtext(text=varnames[i], side = 1, line=3)
-              mtext(text=varnames[i], side = 2, line=3)
-            }
-        } 
-      }}  
-  mtext(text="lag distance", side=1, outer = TRUE, line=0)
-  mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
-  invisible(opar)
-}
-
-
-
-
-#' Check for anisotropy of a theoretical variogram
-#' 
-#' Checks for anisotropy of a theoretical variogram or covariance function model
-
-#' @param x variogram or covariance model object
-#' @param tol tolerance for 
-#' @param ... extra arguments for generic  functionality
-#'
-#' @return Generic function. Returns of boolean answering the question of the name,
-#' or NA if object \code{x} does not contain a known theoretical variogram
-#' @export
-is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) }
-
-#' @method is.isotropic default
-#' @export
-is.isotropic.default = function(x, tol=1e-10, ...) NA
-
-#' @method is.isotropic gmCgram
-#' @export
-is.isotropic.gmCgram = function(x, tol=1e-10, ...){
-   all(apply(x$M, 1, function(y){
-     ev = eigen(y, only.values=TRUE)[[1]]
-     all(abs(ev-ev[1])<tol)
-   }))
-}
-
-#' @method is.isotropic variogramModel
-#' @export
-is.isotropic.variogramModel = function(x, tol=1e-10, ...){
-  anis = x[,grep("anis", colnames(x))]
-  all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) )
-}
-
-#' @method is.isotropic variogramModelList
-#' @export
-is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol)
-
-#' @method is.isotropic LMCAnisCompo
-#' @export
-is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){
-  all(sapply(x["A",], 1, function(y){
-    ev = eigen(y$A, only.values=TRUE)[[1]]
-    all(abs(ev-ev[1])<tol)
-  }))
-}
-
-
-
-
-
-
-
-
-
-#### empirical variogram ---------------------
-
-
-
-
-#' Variogram method for gmSpatialModel objects
-#' 
-#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object
-#'
-#' @param object a gmSpatialModel object containing spatial data.
-#' @param methodPars (currently ignored)
-#' @param ... further parameters to [gstat::variogram()]
-#'
-#' @return Currently the function is just a convenience wrapper on
-#' the variogram calculation functionalities of package "gstat", 
-#' and returns objects of class "\code{gstatVariogram}". Check the
-#' help of \code{gstat::variogram} for further information.
-#' In the near future, methods will be created, which will depend on
-#' the properties of the two arguments provided,  \code{object} and
-#' \code{methodPars}.
-#' @export
-#' @importFrom gstat variogram
-variogram_gmSpatialModel <-  function(object, methodPars=NULL, ...){
-  if(!is.null(methodPars)) stop("use 'variogram' with named parameters only")
-  gstat::variogram(as.gstat(object), ...)
-}
-
-
-# Variogram calculations
-# 
-# Compute empricial variograms out of a spatial data object
-# 
-# @param object spatial data container
-# @param ... further parameters for variogram calculation
-# 
-# @return depending on the input data, different kinds of empirical variograms 
-# will be produced. See appropriate method descriptions.
-# 
-# @importFrom sp variogram
-# @export
-##variogram <- function(object, ...) UseMethod("variogram", object)
-
-# @describeIn variogram
-# @method variogram default
-# @export
-#variogram.default <- function(object, ...){
-#  return(variogram_gmSpatialModel(object, ...))
-#}
-
-  
-#' @export
-setGeneric("variogram", function(object,...) standardGeneric("variogram"))  
-
-
-
-#' Empirical variogram or covariance function in 2D
-#' 
-#' compute the empirical variogram or covariance function in a 2D case study 
-#' 
-#' @param X matrix of Nx2 columns with the geographic coordinates
-#' @param Z matrix or data.frame of data with dimension (N,Dv)
-#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s); 
-#' for covariance function, a (N,Dv)-matrix or a  Dv-vector giving the mean values
-#' @param maxdist maximum lag distance to consider
-#' @param lagNr number of lags to consider
-#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving 
-#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks 
-#' @param azimuthNr number of azimuths to consider
-#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving 
-#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks
-#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction
-#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10
-#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram
-#'
-#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They 
-#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead.
-#' @export
-#' @family gmEVario functions
-#'
-#' @examples
-#' library(gstat)
-#' data("jura", package = "gstat")
-#' X = as.matrix(jura.pred[,1:2])
-#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
-#' vge = gsi.EVario2D(X,Z)
-#' dim(vge)
-#' dimnames(vge)
-#' class(vge["gamma",1])
-#' dim(vge["gamma",1][[1]])
-#' vge["npairs",1]
-#' vge["lags",1]
-gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)),
-                      maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2, 
-                      lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1),
-                      azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr],
-                      maxbreadth=Inf, minpairs=10, cov=FALSE){
-
-  # dimensions
-  N = nrow(X)
-  Dv = ncol(Z)
-  Dg = ncol(X)
-  stopifnot(N==nrow(Z))
-  if(length(dim(Ff))==0){
-    stopifnot(N==length(Ff))
-  }else{
-    stopifnot(N==nrow(Ff))
-  }
-  # expand the information given into a set of columns stating conditions
-  if(length(dim(lags))==0){
-    lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1]) 
-    if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth
-  }else if(dim(lags)==2){
-    lags = data.frame(lags)
-    colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)]
-  }else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
-
-  if(length(dim(azimuths))==0){
-    tol = (azimuths[2]-azimuths[1])/2
-    if(is.na(tol)) tol=180
-    azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol) 
-  }else if(dim(azimuths)==2){
-    azimuths = data.frame(azimuths)
-    colnames(azimuths) = c("minaz","maxaz")
-  }else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
-  
-  # compute residuals
-  if(cov){ 
-    kk = 1
-    if(dim(Z)==dim(Ff)){
-      Z = Z-Ff
-    }else if(ncol(Z)==length(c(unlist(Ff)))){
-      Z = sweep(Z, 2, Ff, "-")
-    }
-  }else{
-    kk = 1 # 2 # we consider each pair only once
-    Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit
-  }
-  # compute pairs
-  ij = expand.grid(1:nrow(X), 1:nrow(X))# indices
-  op = ifelse(cov, "*", "-")
-  ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables
-  ZZ = aperm(ZZ, c(1,3,2,4))
-  dim(ZZ) = c(N*N, Dv, Dv)
-  XX = X[ij[,1],]-X[ij[,2],] # locations
-  XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2))) 
-  XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi
-  XXaz = XXaz %% pi  # residual to 180°
-  
-  # output
-
-  ## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects,
-  #     like logratioVariogramAnisotropy
-  Nh = nrow(lags)
-  Na = nrow(azimuths)
-  vg = array(0, dim=c(Nh, Dv, Dv, Na))
-  n = array(0, dim=c(Nh, Na))
-  azs = azimuths * pi/180
-  res = sapply(1:Na, function(i){
-    tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz)
-    zz = ZZ[tk_a,,]
-    xxabs = XXabs[tk_a]
-    xxaz = XXaz[tk_a]
-    tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=")
-    if(ncol(lags)>2){
-      tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=")
-      tk_h = tk_h & tk_b
-    } 
-    n[,i] = colSums(tk_h)
-    for(j in 1:Nh){
-      if(n[j,i]>minpairs){
-        vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i])
-      }else{
-        vg[j,,,i]=NA
-      }
-    }
-    return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i]))
-  })
-  
-  # output
-  attr(res, "directions") = gsi.azimuthInterval(azimuths)
-  # attr(res, "lags") = gsi.lagClass(lags)
-  attr(res, "type") = ifelse(cov, "covariance","semivariogram")
-  class(res) = "gmEVario"
-  return(res)
-}
-
-
-
-
-#' Plot empirical variograms
-#' 
-#' Flexible plot of an empirical variogram of class gmEVario
-#' 
-#' @param x object to print, of class gmEVario
-#' @param xlim.up range of X values to be used for the diagrams of the upper triangle
-#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle
-#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted 
-#' on the upper triangle
-#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle
-#' @param varnames variable names to be used
-#' @param type  string, controlling whether to plot lines, points, etc (see \code{\link{plot}})
-#' @param add boolean, add stuff to an existing diagram?
-#' @param commonAxis boolean, should vertical axes be shared by all plots in a row?
-#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram)
-#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
-#' defaults to TRUE
-#' @param ... further parameters to \code{\link{matplot}}
-#'
-#' @return invisibly, the graphical parameters active before calling the function. 
-#' This is useful for freezing the plot if you provided `closeplot=FALSE`.
-#' 
-#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been 
-#' computed along certain distances, recorded in its attributes and retrievable with command
-#' \code{\link{ndirections}}.   
-#' @export
-#' @family gmEVario functions
-#' @method plot gmEVario
-#'
-#' @examples
-#' library(gstat)
-#' data("jura", package = "gstat")
-#' X = as.matrix(jura.pred[,1:2])
-#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
-#' vge = gsi.EVario2D(X,Z)
-#' plot(vge)
-#' plot(vge, pch=22, lty=1, bg="grey")
-plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, 
-                         varnames = dimnames(x$gamma)[[2]], type="o", 
-                         add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance",
-                         closeplot=TRUE, ...){
-  Dv = dim(x[1,1][[1]])[2]
-  if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
-  if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x)
-  if( any(c(vdir.up, vdir.lo)>ndirections(x))){
-    stop("indicated directions (vdir.up or vdir.lo) do not exist in x")
-  }
-  if(is.null(xlim.up)){
-    if(add){
-      par(mfg=c(1,2))
-      xlim.up = par()$usr[1:2]
-    }else if(!is.null(vdir.up)){
-      maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
-      xlim.up = c(0, maxdist)
-    }
-  }
-  if(is.null(xlim.lo)){
-    if(add){
-      par(mfg=c(2,1))
-      xlim.lo = par()$usr[1:2]
-    }else if(!is.null(vdir.lo)){
-      maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
-      xlim.lo = c(0, maxdist)
-    }
-  }
-
-  opar = par()
-  opar = par_remove_readonly(opar)
-  
-  if(closeplot) on.exit(par(opar))
-  
-  myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...)
-  if(add) myplot = function(...) matpoints(type=type, ...)
-  if(!add){
-    myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
-    par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
-  }
-  for(i in 1:Dv){
-    for(j in 1:Dv){
-      if((i>=j)&(!is.null(vdir.lo))){
-        par(mfg=c(i+1,j,Dv+1,Dv+1))
-        ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]))
-        if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j]))
-        myplot(
-          sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), 
-          sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]),  ylim=ylim, ...)
-        if(i==j){
-          axis(side = 3)
-          mtext(text=varnames[i], side = 3, line=3)
-          mtext(text=varnames[i], side = 4, line=3)
-        }
-      }
-      if((i<=j)&(!is.null(vdir.up))){
-        par(mfg=c(i,j+1,Dv+1,Dv+1))
-        ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]))
-        if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j]))
-        myplot(
-          sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), 
-          sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]),  ylim=ylim, ...)
-        if(i==j){
-          axis(side = 1)
-          mtext(text=varnames[i], side = 1, line=3)
-          mtext(text=varnames[i], side = 2, line=3)
-        }
-      } 
-    }}  
-  mtext(text="lag distance", side=1, outer = TRUE, line=0)
-  mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
-  attr(opar, "vdir.up")=vdir.up
-  attr(opar, "vdir.lo")=vdir.lo
-  invisible(opar)
-}
-
-
-
-
-
-
-#' Convert empirical structural function to gmEVario format 
-#' 
-#' Convert empirical covariance functions or variograms to the format gmEVario 
-#' of package gmGeostats
-#' 
-#' @param vgemp variogram/covariance function to be converted
-#' @param ... further parameters
-#'
-#' @return the empirical covariance function or variogram, recasted to class 
-#' \code{gmEVario}. This is a generic function. Methods exist for objects of 
-#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy} 
-#' (for compositional data) and \code{gstatVariogram}
-#' (from package \code{gstat}).  
-#' @export
-#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram
-#'  as.gmEVario.logratioVariogramAnisotropy
-#'
-#' @family gmEVario functions
-as.gmEVario  <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)}
-as.gmEVario.default  <- function(vgemp,...) vgemp
-
-
-
-
-#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms
-#' @export
-variogramModelPlot <- function(vg, ...)  UseMethod("variogramModelPlot", vg)
-
-
-#' Quick plotting of empirical and theoretical variograms
-#' Quick and dirty plotting of empirical variograms/covariances with or without their models 
-#' @param vg empirical variogram or covariance function
-#' @param model optional, theoretical variogram or covariance function
-#' @param col colors to use for the several directional variograms
-#' @param commonAxis boolean, should all plots in a row share the same vertical axis?
-#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed  
-#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
-#' defaults to TRUE
-#' @param ... further parameters to underlying plot or matplot functions
-#'
-#' @return The function is primarily called for producing a plot. However, it 
-#' invisibly returns the graphical parameters active before the call 
-#' occurred. This is useful for constructing complex diagrams, by adding layers 
-#' of info. If you want to "freeze" your plot, embed your call in another
-#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you
-#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`.
-#' @export
-#' @family variogramModelPlot 
-#' @family gmEVario functions 
-#' @family gmCgram functions 
-#' @seealso [logratioVariogram()]
-#' @method variogramModelPlot gmEVario
-#'
-#' @examples
-#' utils::data("variogramModels")
-#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5)))
-#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2))
-#' vm = v1+v2
-#' plot(vm, closeplot=TRUE)
-#' library(gstat)
-#' data("jura", package = "gstat")
-#' X = as.matrix(jura.pred[,1:2])
-#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
-#' vge = gsi.EVario2D(X,Z)
-#' variogramModelPlot(vge, vm)
-#' 
-#' 
-variogramModelPlot.gmEVario <- function(vg, model = NULL,   # gstat  or variogramModelList object containing a variogram model fitted to vg
-                                        col = rev(rainbow(ndirections(vg))),
-                                        commonAxis = FALSE,
-                                        newfig = TRUE, closeplot=TRUE, ...){
-  opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...)
-  opar = par_remove_readonly(opar)
-  
-  if(closeplot) on.exit(par(opar))
-  vdir.lo = attr(opar, "vdir.lo")
-  vdir.up = attr(opar, "vdir.up")
-  if(is.null(model))
-    return(invisible(opar))
-  # OTHERWISE: add the curves for the model
-  aux = as.directorVector(attr(vg, "directions"))
-  if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,] 
-  if(!is.null(vdir.up)) vdir.up = aux[vdir.up,] 
-  opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...)
-  #f = as.function(as.gmCgram(gg))
-  #Dv = dim(vg$gamma)[2]
-  #dirs = as.directorVector(attr(vg, "directions"))
-  #Dg = ncol(dirs)
-  #for(i in 1:Dv){
-  #  for(j in 1:Dv){
-  #    if((i>=j)&(!is.null(vdir.lo))){
-  #      par(mfg=c(i+1,j,Dv+1,Dv+1))
-  #      dirs.lo = dirs[vdir.lo,, drop=F]
-  #      xlim = par()$usr[1:2]
-  #      hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
-  #      Y = outer(hd, 1:nrow(dirs.lo), function(h,k){
-  #        f(rep(0,Dg), dirs.lo[k,]*h)[i,j]
-  #      }) 
-  #      matlines(hd, Y, col=col[vdir.lo], ...)
-  #    }
-  #    if((i<=j)&(!is.null(vdir.up))){
-  #      par(mfg=c(i,j+1,Dv+1,Dv+1))
-   #     dirs.up = dirs[vdir.up,, drop=F]
-  #      xlim = par()$usr[1:2]
-  #      hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
-  #      Y = outer(hd, 1:nrow(dirs.up), function(h,k){
-  #        f(rep(0,Dg), dirs.up[k,]*h)[i,j]
-  #      }) 
-  #      matlines(hd, Y, col=col[vdir.up], ...)
-  #    } 
-  #  }}  
-  invisible(opar)
-} 
-
-
-
-#' Number of directions of an empirical variogram
-#' 
-#' Returns the number of directions at which an empirical variogram was computed
-#' 
-#' @param x empirical variogram object
-#'
-#' @return Generic function. It provides the 
-#' number of directions at which an empirical variogram was computed
-#' @export
-#' @family gmEVario functions 
-#' @family gmCgram functions 
-#' @seealso [logratioVariogram()], [gstat::variogram()]
-ndirections <- function(x){ UseMethod("ndirections", x) }
-
-#' @describeIn ndirections generic method
-#' @method ndirections default
-#' @export
-ndirections.default = function(x) nrow(x)
-#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles)
-#' @method ndirections azimuth
-#' @export
-ndirections.azimuth = function(x) length(x)
-#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles)
-#' @method ndirections azimuthInterval
-#' @export
-ndirections.azimuthInterval = function(x) length(x[[1]])
-#' @describeIn ndirections method for empirical logratio variograms with anisotropy 
-#' @method ndirections logratioVariogramAnisotropy
-#' @export
-ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions"))
-#' @describeIn ndirections method for empirical logratio variograms without anisotropy
-#' @method ndirections logratioVariogram
-#' @export
-ndirections.logratioVariogram = function(x) 1
-#' @describeIn ndirections method for empirical gmGeostats variograms
-#' @method ndirections gmEVario
-#' @export
-ndirections.gmEVario = function(x) ndirections(attr(x,"directions"))
-#' @describeIn ndirections method for empirical gstat variograms
-#' @method ndirections gstatVariogram
-#' @export
-ndirections.gstatVariogram = function(x){
-  length(unique(paste(x$dir.hor, x$dir.ver)))
-} 
-
-
-
-
-
-#### internal functions -------------
-
-gsi.azimuth = function(x){
-   class(x) = c("azimuth","directionClass")
-   return(x)
-} 
-
-gsi.azimuthInterval = function(x){
-  class(x) = c("azimuthInterval","directionClass")
-  return(x)
-} 
-
-
-
-gsi.directorVector = function(x){
-  if(length(dim(x))!=2) stop("provided director vectors are not a matrix!")
-  class(x) = c("directorVector", "directionClass")
-  return(x)
-}
-
-print.directionClass = function(x, complete=TRUE, ...){
-  cat(paste("with",nrow(as.directorVector(x)),"directions\n"))
-  if(complete){
-    print(unclass(x), ...)
-  }
-} 
-
-
-
-
-as.directorVector <- function(x){ UseMethod("as.directorVector",x) }
-
-#' @method as.directorVector default 
-as.directorVector.default = function(x,...) x
-
-#' @method as.directorVector azimuth
-as.directorVector.azimuth = function(x, D=2){
-  res = cbind(cos(pi/2-x), sin(pi/2-x))
-  if(D>2){
-    res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res)))
-  }
-  colnames(res) = paste("v", 1:ncol(res), sep="")
-  return(gsi.directorVector(res))
-}
-
-#' @method as.directorVector azimuthInterval
-as.directorVector.azimuthInterval = function(x, D=2){
-  res = (x[[1]]+x[[2]])/2
-  return(as.directorVector.azimuth(res))
-}
-
-
-gsi.lagdists = function(x){
-  class(x) = c("lagdist","lagClass")
-  return(x)
-} 
-
-gsi.lagClass = function(x){
-  if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!")
-  class(x) = c("lagClass")
-  return(x)
-}
-
-#' @method print lagClass
-print.lagClass = function(x,...){
-  if(is.list(x)){
-    print(as.data.frame(unclass(x)), ...)
-  }else{
-    print(unclass(x), ...)
-  }
-}
-
-gsi.midValues <- function(x) UseMethod("gsi.midValues",x)
-
-#' @method gsi.midValues default
-gsi.midValues.default = function(x) x
-
-#' @method gsi.midValues lagClass
-gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 }
-  
-#' @method gsi.midValues azimuthIntervals
-gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 }
-
-
-
-
-
-## theoretical structural functions
-# S3 -> S4 classes  
-# cat("creating variogram model classes\n")
-#' @include gstatCompatibility.R
-#' @include compositionsCompatibility.R
-setOldClass("gmCgram")
-setOldClass("LMCAnisCompo")
-setOldClass("variogramModelList")
-setOldClass("variogramModel")
-
-# abstract classes
-#' @title Structural function model specification
-#' @description Abstract class, containing any specification of a variogram (or covariance) model
-#' @export
-setClassUnion(name="ModelStructuralFunctionSpecification", 
-              members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel"))
-
-
-
-# 
-# #### container class --------------
-# # An S4 class to represent a Gaussian random field specification
-# #
-# # @slot structure ModelStructuralFunctionSpecification. Variogram or 
-# # (generalised) covariance function specification, typically an object
-# # obtained from a call to functions such as \code{\link{setCgram}},
-# # \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
-# # @slot formula formula specifying the structure
-# # of dependence of the mean of the random field w.r.to spatial coordinates 
-# # and/or covariables; typically it will have no left-hand-side term; 
-# # @slot beta numeric, a vector with as many coefficients as terms the formula
-# # above requires for a full specification of the trend; if unknown, these can
-# # be NAs, as many as needed. 
-# #
-# # @return A object with the slots populated as given
-# # @export
-# # @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
-# setClass("gmGaussianModel", 
-#          slots = list(structure = "ModelStructuralFunctionSpecification",
-#                       formula="formula",
-#                       beta = "structure")
-# )
-# 
-# #setMethod("initialize", signature="gmGaussianModel",
-# #          def=function(.Object, structure, formula, beta){
-# #            .Object@formula = formula
-# #            .Object@beta = beta
-# #            if(!is.null(structure)) .Object@structure = structure
-# #            return(.Object)
-# #          }
-# #)
-
-
-#### container class --------------
-# An S4 class to represent a Gaussian random field specification
-#
-# @slot structure ModelStructuralFunctionSpecification. Variogram or 
-# (generalised) covariance function specification, typically an object
-# obtained from a call to functions such as \code{\link{setCgram}},
-# \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
-# @slot formula formula specifying the structure
-# of dependence of the mean of the random field w.r.to spatial coordinates 
-# and/or covariables; typically it will have no left-hand-side term; 
-# @slot beta numeric, a vector with as many coefficients as terms the formula
-# above requires for a full specification of the trend; if unknown, these can
-# be NAs, as many as needed. 
-#
-# @return A object with the slots populated as given
-# @export
-# @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
-setClass("gmGaussianModel", 
-         slots = list(structure = "ModelStructuralFunctionSpecification",
-                      formula="formula",
-                      beta = "numeric")
-)
-
-
-## empirical structural functions
-# S3 -> S4 classes
-# cat("creating empirical variogram classes\n")
-setOldClass("gmEVario")
-setOldClass("logratioVariogram")
-setOldClass("logratioVariogramAnisotropy")
-setOldClass("gstatVariogram")
-
-
-# abstract classes
-#' @title Empirical structural function specification
-#' @description Abstract class, containing any specification of an empirical variogram (or covariance function, or variations)
-#' @export
-setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram"))
-
+#### theoretical variogram ---------------------
+
+#' gmGeostats Variogram models
+#' set up a D-variate variogram models 
+#'
+#' @param type constant indicating the model of correlation function
+#' @param nugget (DxD)-matrix for the nugget effect
+#' @param sill (DxD)-matrix for the partial sills of the correlation function
+#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details)
+#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc)
+#'
+#' @return an object of class "gmCgram" containing the linear model of corregionalization
+#' of the nugget and the structure given. 
+#' @details The argument `type` must be an integer indicating the model to be used. 
+#' Some constants are available to make reading code more understandable. That is, you can 
+#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce
+#' a spherical model. The same applies for the following models: `vg.Gauss=0`; 
+#' `vg.Exp=vg.Exponential=2`. These constants are available after calling
+#' `data("variogramModels")`. 
+#' No other model is currently available, but this data object will be 
+#' regularly updated.
+#' The constant vector `gsi.validModels` contains all currently valid models.
+#' 
+#' Argument `anisRange` expects a matrix $M$ such that 
+#' \deqn{
+#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t
+#' }
+#' is the (square of) the lag distance to be fed into the correlation function.
+#' @family gmCgram 
+#' @export
+#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss 
+#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels
+#'
+#' @examples
+#' utils::data("variogramModels") # shortcut for all model constants
+#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' plot(vm)
+setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){
+  utils::data("variogramModels")
+  stopifnot(all(dim(sill)==dim(nugget)), 
+            ncol(sill)==nrow(sill),
+            type %in% gsi.validModels)
+  dim(sill) = c(1,dim(sill))
+  dim(anisRanges) = c(1,dim(anisRanges))
+  vgout <- list(type=type,
+                data=extraPar,
+                nugget=nugget,
+                sill=sill, #(nstru, nvar, nvar)
+                M=anisRanges     # these are "classical" ranges (i.e. distances)
+  )
+  class(vgout) = "gmCgram"
+  return(vgout)
+}
+
+
+
+#' Subsetting of gmCgram variogram structures
+#' 
+#' Extraction or combination of nested structures of a gmCgram object
+#'
+#' @param x `gmCgram` variogram object
+#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details)
+#' @param ... extra arguments for generic functionality
+#'
+#' @return a `gmCgram` variogram object with the desired structures only. 
+#' @details This function can be used to: extract the nugget (i=0), extract some 
+#' structures (i=indices of the structures, possibly including 0 for the nugget),
+#' or filter some structures out (i=negative indices of the structures to remove; 
+#' nugget will always removed in this case). If you want to extract "slots" or 
+#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
+#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together)
+#' is obtained by summing (+) two `gmCgram` objects.
+#' @export
+#' @method [[ gmCgram
+#' @family gmCgram functions
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' vm[[1]]
+"[[.gmCgram"<- function(x,i,...){
+  nG = dim(x$M)[3]
+  nD = dim(x$nugget)[1]
+  nSo = length(i)
+  nSi = dim(x$M)[1]
+  if(i==0){# case only nugget wanted
+    out = with(x, list(type=type[i], 
+                       data=data[i], 
+                       nugget=nugget, 
+                       sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)), 
+                       M=structure(M[1,,], dim=c(nSo, nG, nG))))
+  }else if( (0 %in% i) & !any(i<0)){
+    j = i[i>0] # case some structures wanted, including nugget
+    out = with(x, list(type=type[j], 
+                       data=data[j], 
+                       nugget=nugget, 
+                       sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)), 
+                       M=structure(M[j,,], dim=c(nSo-1, nG, nG))))
+  }else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted
+    if(all(i<0)) nSo = nSi-nSo
+    out = with(x, list(type=type[i], 
+                       data=data[i], 
+                       nugget=nugget*0, 
+                       sill=structure(sill[i,,], dim=c(nSo, nD, nD)), 
+                       M=structure(M[i,,], dim=c(nSo, nG, nG))))
+  }else{# unsolvable case
+    stop("index set i cannot merge 0 and negative numbers")
+  }
+  class(out) = class(x)
+  return(out)
+}
+
+
+#' Combination of gmCgram variogram structures
+#' 
+#' combination of nested structures of a gmCgram object
+#'
+#' @param x `gmCgram` variogram object
+#' @param y `gmCgram` variogram object
+#' @export
+#' @return The combined nested structures
+#' @method + gmCgram
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+"+.gmCgram" <- function(x,y) {
+  y = as.gmCgram(y)
+  stopifnot(class(y)=="gmCgram", 
+            dim(x$sill)[-1]==dim(y$sill)[-1],
+            dim(x$M)[-1]==dim(y$M)[-1])
+  myfun = function(A,B){
+    D = dim(A)[2]
+    nA = dim(A)[1]
+    nB = dim(B)[1]
+    dim(A) = c(nA, D^2)
+    dim(B) = c(nB, D^2)
+    out = rbind(A, B)
+    dim(out) = c(nA+nB, D, D)
+    return(out)
+  }
+  x$type = c(x$type, y$type)
+  x$data= c(x$data, y$data)
+  x$nugget = x$nugget + y$nugget
+  x$sill = myfun(x$sill, y$sill)
+  x$M = myfun(x$M, y$M)
+  return(x)
+}
+
+
+
+
+#' Subsetting of gmCgram variogram structures
+#' 
+#' Extraction of some variables of a gmCgram object
+#'
+#' @param x \code{gmCgram} variogram object
+#' @param i row-indices of the variables to be kept/removed
+#' @param j column-indices of the variables to be kept/removed (if only \code{i}
+#' is specified, \code{j} will be taken as equal to \code{i}!)
+#' @param ...  extra arguments for generic functionality
+#'
+#' @return a \code{gmCgram} variogram object with the desired variables only. 
+#' @details This function can be used to extract the model for a a subset of variables. 
+#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}. 
+#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give
+#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively  
+#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the
+#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")} 
+#' object, otherwise it will be a regular class \code{"gmCgram"} object.
+#' If you want to extract "slots" or 
+#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
+#' variogram matrices, use the `[`-notation.
+#' @export
+#' @method [ gmCgram
+#' @family gmCgram functions
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' vm[1,1]
+"[.gmCgram"<- function(x,i,j=i,...){
+  nDi = length(i)
+  nDj = length(j)
+  nS = dim(x$M)[1]
+  out = with(x, list(type=type, 
+                     data=data, 
+                     nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)), 
+                     sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)), 
+                     M=M))
+  class(out) = class(x)
+  if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out)))
+  return(out)
+}
+
+#' Length, and number of columns or rows
+#' 
+#' Provide number of structures, and nr of variables of an LMC of class gmCgram 
+#'
+#' @param x gmCgram object
+#'
+#' @return \code{length} returns the number of structures (nugget not counted), while
+#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will
+#' be also valid for the sill).
+#' @export
+#' @aliases ncol.gmCgram nrow.gmCgram
+#' @family gmCgram functions
+#'
+#' @method length gmCgram
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' length(vm)
+#' ncol(vm)
+#' nrow(vm)
+length.gmCgram = function(x)  length(x$type)
+if(!isGeneric("ncol")){
+  ncol <- function(x) UseMethod("ncol",x)
+  ncol.default <- base::ncol
+}
+if(!isGeneric("nrow")){
+  nrow <- function(x) UseMethod("nrow",x)
+  nrow.default <- base::nrow
+}
+ncol.gmCgram = function(x) ncol(x$nugget)
+nrow.gmCgram = function(x) nrow(x$nugget)
+
+
+#' Convert a gmCgram object to an (evaluable) function
+#' 
+#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function
+#'
+#' @param x a gmCgram object
+#' @param ... extra arguments for generic functionality
+#'
+#' @return a \code{function} that can be evaluated normally, with an argument \code{X}
+#' and possibly another argument \code{Y}; both must have the same number of columns 
+#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}).
+#' @export
+#' @method as.function gmCgram
+#' @family gmCgram functions
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' vgf = as.function(vm)
+#' (h = rbind(c(0,1), c(0,0), c(1,1)))
+#' vgf(h)
+#' predict(vm, h)
+as.function.gmCgram = function(x,...){
+    f <- function(X,Y=X){
+      if(is(X,"Spatial")) X = sp::coordinates(X)
+      X = as.matrix(X)
+      if(is(Y,"Spatial")) Y = sp::coordinates(Y)
+      Y = as.matrix(Y)
+      stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3])
+      ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE)
+      o = gsi.calcCgram(X,Y,x,ijEqual)
+      return(o)
+    }
+  return(f)
+}
+
+#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates
+#' @param object gmCgram object
+#' @param newdata matrix, data.frame or Spatial object containing coordinates
+#' @method predict gmCgram
+#' @export
+predict.gmCgram = function(object, newdata, ...){
+  as.function(object)(X=newdata)
+}
+
+
+#' Convert theoretical structural functions to gmCgram format 
+#' 
+#' Convert covariance function or variogram models to the format gmCgram 
+#' of package gmGeostats
+#' 
+#' @param m model to be converted
+#' @param ... further parameters
+#'
+#' @return the covariance/variogram model, recasted to class \code{gmCgram}. 
+#' This is a generic function. Methods exist for objects of class
+#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList}
+#' (as provided by package \code{gstat}).  
+#' @export
+#' @family gmCgram functions
+as.gmCgram <- function(m, ...)  UseMethod("as.gmCgram",m) 
+
+#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format 
+#' @method as.gmCgram default
+#' @export
+as.gmCgram.default <- function(m,...) m 
+
+
+
+#' Draw cuves for covariance/variogram models
+#' 
+#' Represent a gmCgram object as a matrix of lines in several plots
+#'
+#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions
+#' @param xlim.up range of lag values to use in plots of the upper triangle
+#' @param xlim.lo range of lag values to use in plots of the lower triangle
+#' @param vdir.up geograohic directions to represent in the upper triangle 
+#' @param vdir.lo geograohic directions to represent in the lower triangle
+#' @param xlength number of discretization points to use for the curves (defaults to 200)
+#' @param varnames string vector, variable names to use in the labelling of axes
+#' @param add logical, should a new plot be created or stuff be added to an existing one?
+#' @param commonAxis logical, is a common Y axis for all plots in a row desired?
+#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted?   
+#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
+#' defaults to TRUE
+#' @param ... further graphical parameters for the plotting function
+#'
+#' @return This function is called for its side effect of producing a plot: the plot will be
+#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function
+#' invisibly returns the graphical parameters that were active before starting the plot. Hence, 
+#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))},
+#' or \code{plot(x, closeplot=TRUE, ...)}.
+#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference
+#' is only relevant when working with the screen graphical device. 
+#' @export 
+#' @method plot gmCgram
+#' @family gmCgram functions
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
+#' vm = v1+v2
+#' plot(vm)
+#' plot(vm, cov=FALSE)
+plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget), 
+                        add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){
+  Dg = dim(x$M)[2]
+  Ns = dim(x$M)[1]
+  Dv = dim(x$nugget)[1]
+  if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
+  if(is.null(vdir.up) & is.null(vdir.lo)){
+    vdir.lo = rep(0, Dg)
+    vdir.lo[1] = 1
+    dim(vdir.lo) = c(1,Dg)
+    if(!is.isotropic(x)){
+      aux = diag(Dg)
+      if(Dg==3){
+        vdir.lo = aux[3,]
+        vdir.up = aux[-3,]
+      }else
+        vdir.lo = aux
+    }
+  }
+  if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up))
+  if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo))
+  fk = c(sqrt(3),1,3)[x$type+1]*1.25  # range to effective range factor expansion
+  if(is.null(xlim.up)){
+    if(add){
+      par(mfg=c(1,2))
+      xlim.up = par()$usr[1:2]
+    }else if(!is.null(vdir.up)){
+      maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,])))
+      # here we must compute the max M projected on vd.up
+      xlim.up = c(0, max(fk*maxdist))
+    }
+  }
+  if(is.null(xlim.lo)){
+    if(add){
+      par(mfg=c(2,1))
+      xlim.lo = par()$usr[1:2]
+    }else if(!is.null(vdir.lo)){
+      maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,])))
+      # here we must compute the max M projected on vd.lo
+      xlim.lo = c(0, max(fk*maxdist))
+    }
+  }
+  if(!is.null(xlim.up)){
+    xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength)
+  }else{ xseq.up=NULL}
+  if(!is.null(xlim.lo)){
+    xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength)
+  }else{ xseq.lo=NULL}
+  
+  opar = par()
+  opar = par_remove_readonly(opar)
+  
+  if(closeplot) on.exit(par(opar))
+  
+  getVdens = function(vdir, xseq){
+    if(is.null(vdir)|is.null(xseq)) return(NULL)
+    Vdens = sapply(1:nrow(vdir), function(k){
+      X = outer(xseq, vdir[k,])
+      Y = X[1,,drop=F]*0
+      gsi.calcCgram(X,Y,x,FALSE)
+    })
+    dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir))
+    if(!cov){
+      # convert to variogram if cov=FALSE
+      Y = matrix(rep(0,Dg), ncol=Dg)
+      C0 = gsi.calcCgram(Y,Y,x,FALSE)
+      dim(C0) = c(Dv,Dv)
+      Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances
+    }
+    return(Vdens)    
+  }
+  Vdens.up = getVdens(vdir.up, xseq.up)
+  Vdens.lo = getVdens(vdir.lo, xseq.lo)
+  
+  myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...)
+  if(add) myplot = function(...) matlines(...)
+  if(!add){
+    par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
+    myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") 
+  }
+  for(i in 1:Dv){
+      for(j in 1:Dv){
+        if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){
+            par(mfg=c(i+1,j,Dv+1,Dv+1))
+            ylim = range(Vdens.lo[,,j,])
+            if(commonAxis) ylim=range(Vdens.lo[,,j,])
+            myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...)
+            if(i==j & !add){
+              axis(side = 3)
+              mtext(text=varnames[i], side = 3, line=3)
+              mtext(text=varnames[i], side = 4, line=3)
+            }
+        }
+        if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){
+            par(mfg=c(i,j+1,Dv+1,Dv+1))
+            ylim = range(Vdens.up[,,j,])
+            if(commonAxis) ylim=range(Vdens.up[,,j,])
+            myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...)
+            if(i==j & !add){
+              axis(side = 1)
+              mtext(text=varnames[i], side = 1, line=3)
+              mtext(text=varnames[i], side = 2, line=3)
+            }
+        } 
+      }}  
+  mtext(text="lag distance", side=1, outer = TRUE, line=0)
+  mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
+  invisible(opar)
+}
+
+
+
+
+#' Check for anisotropy of a theoretical variogram
+#' 
+#' Checks for anisotropy of a theoretical variogram or covariance function model
+
+#' @param x variogram or covariance model object
+#' @param tol tolerance for 
+#' @param ... extra arguments for generic  functionality
+#'
+#' @return Generic function. Returns of boolean answering the question of the name,
+#' or NA if object \code{x} does not contain a known theoretical variogram
+#' @export
+is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) }
+
+#' @method is.isotropic default
+#' @export
+is.isotropic.default = function(x, tol=1e-10, ...) NA
+
+#' @method is.isotropic gmCgram
+#' @export
+is.isotropic.gmCgram = function(x, tol=1e-10, ...){
+   all(apply(x$M, 1, function(y){
+     ev = eigen(y, only.values=TRUE)[[1]]
+     all(abs(ev-ev[1])<tol)
+   }))
+}
+
+#' @method is.isotropic variogramModel
+#' @export
+is.isotropic.variogramModel = function(x, tol=1e-10, ...){
+  anis = x[,grep("anis", colnames(x))]
+  all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) )
+}
+
+#' @method is.isotropic variogramModelList
+#' @export
+is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol)
+
+#' @method is.isotropic LMCAnisCompo
+#' @export
+is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){
+  all(sapply(x["A",], 1, function(y){
+    ev = eigen(y$A, only.values=TRUE)[[1]]
+    all(abs(ev-ev[1])<tol)
+  }))
+}
+
+
+
+
+
+
+
+
+
+#### empirical variogram ---------------------
+
+
+
+
+#' Variogram method for gmSpatialModel objects
+#' 
+#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object
+#'
+#' @param object a gmSpatialModel object containing spatial data.
+#' @param methodPars (currently ignored)
+#' @param ... further parameters to [gstat::variogram()]
+#'
+#' @return Currently the function is just a convenience wrapper on
+#' the variogram calculation functionalities of package "gstat", 
+#' and returns objects of class "\code{gstatVariogram}". Check the
+#' help of \code{gstat::variogram} for further information.
+#' In the near future, methods will be created, which will depend on
+#' the properties of the two arguments provided,  \code{object} and
+#' \code{methodPars}.
+#' @export
+#' @importFrom gstat variogram
+variogram_gmSpatialModel <-  function(object, methodPars=NULL, ...){
+  if(!is.null(methodPars)) stop("use 'variogram' with named parameters only")
+  gstat::variogram(as.gstat(object), ...)
+}
+
+
+# Variogram calculations
+# 
+# Compute empricial variograms out of a spatial data object
+# 
+# @param object spatial data container
+# @param ... further parameters for variogram calculation
+# 
+# @return depending on the input data, different kinds of empirical variograms 
+# will be produced. See appropriate method descriptions.
+# 
+# @importFrom sp variogram
+# @export
+##variogram <- function(object, ...) UseMethod("variogram", object)
+
+# @describeIn variogram
+# @method variogram default
+# @export
+#variogram.default <- function(object, ...){
+#  return(variogram_gmSpatialModel(object, ...))
+#}
+
+  
+#' @export
+setGeneric("variogram", function(object,...) standardGeneric("variogram"))  
+
+
+
+#' Empirical variogram or covariance function in 2D
+#' 
+#' compute the empirical variogram or covariance function in a 2D case study 
+#' 
+#' @param X matrix of Nx2 columns with the geographic coordinates
+#' @param Z matrix or data.frame of data with dimension (N,Dv)
+#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s); 
+#' for covariance function, a (N,Dv)-matrix or a  Dv-vector giving the mean values
+#' @param maxdist maximum lag distance to consider
+#' @param lagNr number of lags to consider
+#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving 
+#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks 
+#' @param azimuthNr number of azimuths to consider
+#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving 
+#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks
+#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction
+#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10
+#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram
+#'
+#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They 
+#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead.
+#' @export
+#' @family gmEVario functions
+#'
+#' @examples
+#' library(gstat)
+#' data("jura", package = "gstat")
+#' X = as.matrix(jura.pred[,1:2])
+#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
+#' vge = gsi.EVario2D(X,Z)
+#' dim(vge)
+#' dimnames(vge)
+#' class(vge["gamma",1])
+#' dim(vge["gamma",1][[1]])
+#' vge["npairs",1]
+#' vge["lags",1]
+gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)),
+                      maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2, 
+                      lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1),
+                      azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr],
+                      maxbreadth=Inf, minpairs=10, cov=FALSE){
+
+  # dimensions
+  N = nrow(X)
+  Dv = ncol(Z)
+  Dg = ncol(X)
+  stopifnot(N==nrow(Z))
+  if(length(dim(Ff))==0){
+    stopifnot(N==length(Ff))
+  }else{
+    stopifnot(N==nrow(Ff))
+  }
+  # expand the information given into a set of columns stating conditions
+  if(length(dim(lags))==0){
+    lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1]) 
+    if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth
+  }else if(dim(lags)==2){
+    lags = data.frame(lags)
+    colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)]
+  }else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
+
+  if(length(dim(azimuths))==0){
+    tol = (azimuths[2]-azimuths[1])/2
+    if(is.na(tol)) tol=180
+    azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol) 
+  }else if(dim(azimuths)==2){
+    azimuths = data.frame(azimuths)
+    colnames(azimuths) = c("minaz","maxaz")
+  }else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
+  
+  # compute residuals
+  if(cov){ 
+    kk = 1
+    if(dim(Z)==dim(Ff)){
+      Z = Z-Ff
+    }else if(ncol(Z)==length(c(unlist(Ff)))){
+      Z = sweep(Z, 2, Ff, "-")
+    }
+  }else{
+    kk = 1 # 2 # we consider each pair only once
+    Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit
+  }
+  # compute pairs
+  ij = expand.grid(1:nrow(X), 1:nrow(X))# indices
+  op = ifelse(cov, "*", "-")
+  ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables
+  ZZ = aperm(ZZ, c(1,3,2,4))
+  dim(ZZ) = c(N*N, Dv, Dv)
+  XX = X[ij[,1],]-X[ij[,2],] # locations
+  XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2))) 
+  XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi
+  XXaz = XXaz %% pi  # residual to 180°
+  
+  # output
+
+  ## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects,
+  #     like logratioVariogramAnisotropy
+  Nh = nrow(lags)
+  Na = nrow(azimuths)
+  vg = array(0, dim=c(Nh, Dv, Dv, Na))
+  n = array(0, dim=c(Nh, Na))
+  azs = azimuths * pi/180
+  res = sapply(1:Na, function(i){
+    tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz)
+    zz = ZZ[tk_a,,]
+    xxabs = XXabs[tk_a]
+    xxaz = XXaz[tk_a]
+    tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=")
+    if(ncol(lags)>2){
+      tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=")
+      tk_h = tk_h & tk_b
+    } 
+    n[,i] = colSums(tk_h)
+    for(j in 1:Nh){
+      if(n[j,i]>minpairs){
+        vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i])
+      }else{
+        vg[j,,,i]=NA
+      }
+    }
+    return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i]))
+  })
+  
+  # output
+  attr(res, "directions") = gsi.azimuthInterval(azimuths)
+  # attr(res, "lags") = gsi.lagClass(lags)
+  attr(res, "type") = ifelse(cov, "covariance","semivariogram")
+  class(res) = "gmEVario"
+  return(res)
+}
+
+
+
+
+#' Plot empirical variograms
+#' 
+#' Flexible plot of an empirical variogram of class gmEVario
+#' 
+#' @param x object to print, of class gmEVario
+#' @param xlim.up range of X values to be used for the diagrams of the upper triangle
+#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle
+#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted 
+#' on the upper triangle
+#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle
+#' @param varnames variable names to be used
+#' @param type  string, controlling whether to plot lines, points, etc (see \code{\link{plot}})
+#' @param add boolean, add stuff to an existing diagram?
+#' @param commonAxis boolean, should vertical axes be shared by all plots in a row?
+#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram)
+#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
+#' defaults to TRUE
+#' @param ... further parameters to \code{\link{matplot}}
+#'
+#' @return invisibly, the graphical parameters active before calling the function. 
+#' This is useful for freezing the plot if you provided `closeplot=FALSE`.
+#' 
+#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been 
+#' computed along certain distances, recorded in its attributes and retrievable with command
+#' \code{\link{ndirections}}.   
+#' @export
+#' @family gmEVario functions
+#' @method plot gmEVario
+#'
+#' @examples
+#' library(gstat)
+#' data("jura", package = "gstat")
+#' X = as.matrix(jura.pred[,1:2])
+#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
+#' vge = gsi.EVario2D(X,Z)
+#' plot(vge)
+#' plot(vge, pch=22, lty=1, bg="grey")
+plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, 
+                         varnames = dimnames(x$gamma)[[2]], type="o", 
+                         add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance",
+                         closeplot=TRUE, ...){
+  Dv = dim(x[1,1][[1]])[2]
+  if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
+  if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x)
+  if( any(c(vdir.up, vdir.lo)>ndirections(x))){
+    stop("indicated directions (vdir.up or vdir.lo) do not exist in x")
+  }
+  if(is.null(xlim.up)){
+    if(add){
+      par(mfg=c(1,2))
+      xlim.up = par()$usr[1:2]
+    }else if(!is.null(vdir.up)){
+      maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
+      xlim.up = c(0, maxdist)
+    }
+  }
+  if(is.null(xlim.lo)){
+    if(add){
+      par(mfg=c(2,1))
+      xlim.lo = par()$usr[1:2]
+    }else if(!is.null(vdir.lo)){
+      maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
+      xlim.lo = c(0, maxdist)
+    }
+  }
+
+  opar = par()
+  opar = par_remove_readonly(opar)
+  
+  if(closeplot) on.exit(par(opar))
+  
+  myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...)
+  if(add) myplot = function(...) matpoints(type=type, ...)
+  if(!add){
+    myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
+    par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
+  }
+  for(i in 1:Dv){
+    for(j in 1:Dv){
+      if((i>=j)&(!is.null(vdir.lo))){
+        par(mfg=c(i+1,j,Dv+1,Dv+1))
+        ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]))
+        if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j]))
+        myplot(
+          sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), 
+          sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]),  ylim=ylim, ...)
+        if(i==j){
+          axis(side = 3)
+          mtext(text=varnames[i], side = 3, line=3)
+          mtext(text=varnames[i], side = 4, line=3)
+        }
+      }
+      if((i<=j)&(!is.null(vdir.up))){
+        par(mfg=c(i,j+1,Dv+1,Dv+1))
+        ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]))
+        if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j]))
+        myplot(
+          sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), 
+          sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]),  ylim=ylim, ...)
+        if(i==j){
+          axis(side = 1)
+          mtext(text=varnames[i], side = 1, line=3)
+          mtext(text=varnames[i], side = 2, line=3)
+        }
+      } 
+    }}  
+  mtext(text="lag distance", side=1, outer = TRUE, line=0)
+  mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
+  attr(opar, "vdir.up")=vdir.up
+  attr(opar, "vdir.lo")=vdir.lo
+  invisible(opar)
+}
+
+
+
+
+
+
+#' Convert empirical structural function to gmEVario format 
+#' 
+#' Convert empirical covariance functions or variograms to the format gmEVario 
+#' of package gmGeostats
+#' 
+#' @param vgemp variogram/covariance function to be converted
+#' @param ... further parameters
+#'
+#' @return the empirical covariance function or variogram, recasted to class 
+#' \code{gmEVario}. This is a generic function. Methods exist for objects of 
+#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy} 
+#' (for compositional data) and \code{gstatVariogram}
+#' (from package \code{gstat}).  
+#' @export
+#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram
+#'  as.gmEVario.logratioVariogramAnisotropy
+#'
+#' @family gmEVario functions
+as.gmEVario  <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)}
+as.gmEVario.default  <- function(vgemp,...) vgemp
+
+
+
+
+#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms
+#' @export
+variogramModelPlot <- function(vg, ...)  UseMethod("variogramModelPlot", vg)
+
+
+#' Quick plotting of empirical and theoretical variograms
+#' Quick and dirty plotting of empirical variograms/covariances with or without their models 
+#' @param vg empirical variogram or covariance function
+#' @param model optional, theoretical variogram or covariance function
+#' @param col colors to use for the several directional variograms
+#' @param commonAxis boolean, should all plots in a row share the same vertical axis?
+#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed  
+#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? 
+#' defaults to TRUE
+#' @param ... further parameters to underlying plot or matplot functions
+#'
+#' @return The function is primarily called for producing a plot. However, it 
+#' invisibly returns the graphical parameters active before the call 
+#' occurred. This is useful for constructing complex diagrams, by adding layers 
+#' of info. If you want to "freeze" your plot, embed your call in another
+#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you
+#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`.
+#' @export
+#' @family variogramModelPlot 
+#' @family gmEVario functions 
+#' @family gmCgram functions 
+#' @seealso [logratioVariogram()]
+#' @method variogramModelPlot gmEVario
+#'
+#' @examples
+#' utils::data("variogramModels")
+#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5)))
+#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2))
+#' vm = v1+v2
+#' plot(vm, closeplot=TRUE)
+#' library(gstat)
+#' data("jura", package = "gstat")
+#' X = as.matrix(jura.pred[,1:2])
+#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
+#' vge = gsi.EVario2D(X,Z)
+#' variogramModelPlot(vge, vm)
+#' 
+#' 
+variogramModelPlot.gmEVario <- function(vg, model = NULL,   # gstat  or variogramModelList object containing a variogram model fitted to vg
+                                        col = rev(rainbow(ndirections(vg))),
+                                        commonAxis = FALSE,
+                                        newfig = TRUE, closeplot=TRUE, ...){
+  opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...)
+  opar = par_remove_readonly(opar)
+  
+  if(closeplot) on.exit(par(opar))
+  vdir.lo = attr(opar, "vdir.lo")
+  vdir.up = attr(opar, "vdir.up")
+  if(is.null(model))
+    return(invisible(opar))
+  # OTHERWISE: add the curves for the model
+  aux = as.directorVector(attr(vg, "directions"))
+  if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,] 
+  if(!is.null(vdir.up)) vdir.up = aux[vdir.up,] 
+  opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...)
+  #f = as.function(as.gmCgram(gg))
+  #Dv = dim(vg$gamma)[2]
+  #dirs = as.directorVector(attr(vg, "directions"))
+  #Dg = ncol(dirs)
+  #for(i in 1:Dv){
+  #  for(j in 1:Dv){
+  #    if((i>=j)&(!is.null(vdir.lo))){
+  #      par(mfg=c(i+1,j,Dv+1,Dv+1))
+  #      dirs.lo = dirs[vdir.lo,, drop=F]
+  #      xlim = par()$usr[1:2]
+  #      hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
+  #      Y = outer(hd, 1:nrow(dirs.lo), function(h,k){
+  #        f(rep(0,Dg), dirs.lo[k,]*h)[i,j]
+  #      }) 
+  #      matlines(hd, Y, col=col[vdir.lo], ...)
+  #    }
+  #    if((i<=j)&(!is.null(vdir.up))){
+  #      par(mfg=c(i,j+1,Dv+1,Dv+1))
+   #     dirs.up = dirs[vdir.up,, drop=F]
+  #      xlim = par()$usr[1:2]
+  #      hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
+  #      Y = outer(hd, 1:nrow(dirs.up), function(h,k){
+  #        f(rep(0,Dg), dirs.up[k,]*h)[i,j]
+  #      }) 
+  #      matlines(hd, Y, col=col[vdir.up], ...)
+  #    } 
+  #  }}  
+  invisible(opar)
+} 
+
+
+
+#' Number of directions of an empirical variogram
+#' 
+#' Returns the number of directions at which an empirical variogram was computed
+#' 
+#' @param x empirical variogram object
+#'
+#' @return Generic function. It provides the 
+#' number of directions at which an empirical variogram was computed
+#' @export
+#' @family gmEVario functions 
+#' @family gmCgram functions 
+#' @seealso [logratioVariogram()], [gstat::variogram()]
+ndirections <- function(x){ UseMethod("ndirections", x) }
+
+#' @describeIn ndirections generic method
+#' @method ndirections default
+#' @export
+ndirections.default = function(x) nrow(x)
+#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles)
+#' @method ndirections azimuth
+#' @export
+ndirections.azimuth = function(x) length(x)
+#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles)
+#' @method ndirections azimuthInterval
+#' @export
+ndirections.azimuthInterval = function(x) length(x[[1]])
+#' @describeIn ndirections method for empirical logratio variograms with anisotropy 
+#' @method ndirections logratioVariogramAnisotropy
+#' @export
+ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions"))
+#' @describeIn ndirections method for empirical logratio variograms without anisotropy
+#' @method ndirections logratioVariogram
+#' @export
+ndirections.logratioVariogram = function(x) 1
+#' @describeIn ndirections method for empirical gmGeostats variograms
+#' @method ndirections gmEVario
+#' @export
+ndirections.gmEVario = function(x) ndirections(attr(x,"directions"))
+#' @describeIn ndirections method for empirical gstat variograms
+#' @method ndirections gstatVariogram
+#' @export
+ndirections.gstatVariogram = function(x){
+  length(unique(paste(x$dir.hor, x$dir.ver)))
+} 
+
+
+
+
+
+#### internal functions -------------
+
+gsi.azimuth = function(x){
+   class(x) = c("azimuth","directionClass")
+   return(x)
+} 
+
+gsi.azimuthInterval = function(x){
+  class(x) = c("azimuthInterval","directionClass")
+  return(x)
+} 
+
+
+
+gsi.directorVector = function(x){
+  if(length(dim(x))!=2) stop("provided director vectors are not a matrix!")
+  class(x) = c("directorVector", "directionClass")
+  return(x)
+}
+
+print.directionClass = function(x, complete=TRUE, ...){
+  cat(paste("with",nrow(as.directorVector(x)),"directions\n"))
+  if(complete){
+    print(unclass(x), ...)
+  }
+} 
+
+
+
+
+as.directorVector <- function(x){ UseMethod("as.directorVector",x) }
+
+#' @method as.directorVector default 
+as.directorVector.default = function(x,...) x
+
+#' @method as.directorVector azimuth
+as.directorVector.azimuth = function(x, D=2){
+  res = cbind(cos(pi/2-x), sin(pi/2-x))
+  if(D>2){
+    res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res)))
+  }
+  colnames(res) = paste("v", 1:ncol(res), sep="")
+  return(gsi.directorVector(res))
+}
+
+#' @method as.directorVector azimuthInterval
+as.directorVector.azimuthInterval = function(x, D=2){
+  res = (x[[1]]+x[[2]])/2
+  return(as.directorVector.azimuth(res))
+}
+
+
+gsi.lagdists = function(x){
+  class(x) = c("lagdist","lagClass")
+  return(x)
+} 
+
+gsi.lagClass = function(x){
+  if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!")
+  class(x) = c("lagClass")
+  return(x)
+}
+
+#' @method print lagClass
+print.lagClass = function(x,...){
+  if(is.list(x)){
+    print(as.data.frame(unclass(x)), ...)
+  }else{
+    print(unclass(x), ...)
+  }
+}
+
+gsi.midValues <- function(x) UseMethod("gsi.midValues",x)
+
+#' @method gsi.midValues default
+gsi.midValues.default = function(x) x
+
+#' @method gsi.midValues lagClass
+gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 }
+  
+#' @method gsi.midValues azimuthIntervals
+gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 }
+
+
+
+
+
+## theoretical structural functions
+# S3 -> S4 classes  
+# cat("creating variogram model classes\n")
+#' @include gstatCompatibility.R
+#' @include compositionsCompatibility.R
+setOldClass("gmCgram")
+setOldClass("LMCAnisCompo")
+setOldClass("variogramModelList")
+setOldClass("variogramModel")
+
+# abstract classes
+#' @title Structural function model specification
+#' @description Abstract class, containing any specification of a variogram (or covariance) model
+#' @export
+setClassUnion(name="ModelStructuralFunctionSpecification", 
+              members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel"))
+
+
+
+# 
+# #### container class --------------
+# # An S4 class to represent a Gaussian random field specification
+# #
+# # @slot structure ModelStructuralFunctionSpecification. Variogram or 
+# # (generalised) covariance function specification, typically an object
+# # obtained from a call to functions such as \code{\link{setCgram}},
+# # \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
+# # @slot formula formula specifying the structure
+# # of dependence of the mean of the random field w.r.to spatial coordinates 
+# # and/or covariables; typically it will have no left-hand-side term; 
+# # @slot beta numeric, a vector with as many coefficients as terms the formula
+# # above requires for a full specification of the trend; if unknown, these can
+# # be NAs, as many as needed. 
+# #
+# # @return A object with the slots populated as given
+# # @export
+# # @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
+# setClass("gmGaussianModel", 
+#          slots = list(structure = "ModelStructuralFunctionSpecification",
+#                       formula="formula",
+#                       beta = "structure")
+# )
+# 
+# #setMethod("initialize", signature="gmGaussianModel",
+# #          def=function(.Object, structure, formula, beta){
+# #            .Object@formula = formula
+# #            .Object@beta = beta
+# #            if(!is.null(structure)) .Object@structure = structure
+# #            return(.Object)
+# #          }
+# #)
+
+
+#### container class --------------
+# An S4 class to represent a Gaussian random field specification
+#
+# @slot structure ModelStructuralFunctionSpecification. Variogram or 
+# (generalised) covariance function specification, typically an object
+# obtained from a call to functions such as \code{\link{setCgram}},
+# \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
+# @slot formula formula specifying the structure
+# of dependence of the mean of the random field w.r.to spatial coordinates 
+# and/or covariables; typically it will have no left-hand-side term; 
+# @slot beta numeric, a vector with as many coefficients as terms the formula
+# above requires for a full specification of the trend; if unknown, these can
+# be NAs, as many as needed. 
+#
+# @return A object with the slots populated as given
+# @export
+# @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
+setClass("gmGaussianModel", 
+         slots = list(structure = "ModelStructuralFunctionSpecification",
+                      formula="formula",
+                      beta = "numeric")
+)
+
+
+## empirical structural functions
+# S3 -> S4 classes
+# cat("creating empirical variogram classes\n")
+setOldClass("gmEVario")
+setOldClass("logratioVariogram")
+setOldClass("logratioVariogramAnisotropy")
+setOldClass("gstatVariogram")
+
+
+# abstract classes
+#' @title Empirical structural function specification
+#' @description Abstract class, containing any specification of an empirical variogram (or covariance function, or variations)
+#' @export
+setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram"))
+
diff --git a/cran-comments.md b/cran-comments.md
index f066d45..57293cf 100644
--- a/cran-comments.md
+++ b/cran-comments.md
@@ -1,39 +1,40 @@
-  ## Test environments
+## Test environments
   
-  * Linux: Ubuntu 18.04.4LTS  (local)
-    - R 3.4.4 (production)
-    - R devel 2020-07-28 r78930 (test)
-    - R patched 4.0.2 r78930 (test)
-  * Windows 7 Enterprise (test)
-    - R 3.5.1 (test)
+* Linux: Ubuntu 18.04.4LTS  (local)
+  - R 3.4.4 (production)
+  - R devel 2020-07-28 r78930 (test)
+  - R patched 4.0.2 r78930 (test)
+* Windows 7 Enterprise (test)
+  - R 3.5.1 (test)
+  - R 4.0.2 (test)
   
   
-  ## R CMD check results
+## R CMD check results
   
   0 errors | 0 warnings | 0 notes
   
   
-  ## This is a resubmission
+## This is a resubmission
   
-  ```
-  Dear maintainer,
+```
+Dear maintainer,
   
-  Please see the problems shown on
+Please see the problems shown on
   <https://cran.r-project.org/web/checks/check_results_gmGeostats.html>.
   
   Please correct before 2020-10-03 to safely retain your package on CRAN.
   
-  The CRAN Team
-  ```
+The CRAN Team
+```
   
-  ... the sympthom being an error while #include <omp.h> in r-release-macos-x86_64, we identified the problem as a lack of appropriate linkage of OpenMP. 
+... the sympthom being an error while #include <omp.h> in r-release-macos-x86_64, we identified the problem as a lack of appropriate linkage of OpenMP. 
   
-  Solution: 
+Solution: 
   1.- the header inclusion and all usages of #pragma directives were enclosed in conditional structures
-  #ifdef _OPENMP 
+#ifdef _OPENMP 
    ...
-  #endif 
+#endif 
   
-  2. `$(SHLIB_OPENMP_CFLAGS)` was added to PKG_CFLAGS and PKG_LIBS fields in Makevars files
+   2. `$(SHLIB_OPENMP_CFLAGS)` was added to PKG_CFLAGS and PKG_LIBS fields in Makevars files
   
   NOTE: we do not have access to any MacOS machine to test that our solution is effective. Our apologies if this is not working!
\ No newline at end of file
diff --git a/src/gmGeostats.c b/src/gmGeostats.c
index 4b689ab..e003d2c 100644
--- a/src/gmGeostats.c
+++ b/src/gmGeostats.c
@@ -341,6 +341,7 @@ void getUnitvec(
     unitvec[0] = cos(d1)*d3; 
     unitvec[1] = sin(d1)*d3;
   } else if( dimX==2 ) {
+    Rprintf("Warning: gmGeostatsC.getUnitvec in 2D is incompatible with spherical variograms");
     d1=invBitExp2(ip);
     unitvec[0] = cos(d1*M_PI); 
     unitvec[1] = sin(d1*M_PI);   
-- 
GitLab