From b9d9603522ceae8e328eab4d2c09388dca6ac6bb Mon Sep 17 00:00:00 2001 From: Raimon Tolosana-Delgado <tolosa53@fwg206.ad.fz-rossendorf.de> Date: Wed, 23 Jun 2021 20:25:09 +0200 Subject: [PATCH] validation bug corrected --- DESCRIPTION | 2 +- NEWS.md | 6 +- R/gmValidationStrategy.R | 21 +- R/variograms.R | 2314 +++++++++++++++++++------------------- cran-comments.md | 39 +- src/gmGeostats.c | 1 + 6 files changed, 1199 insertions(+), 1184 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 8c06d06..575aded 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: gmGeostats -Version: 0.10-7.9003 +Version: 0.10-7.9004 Date: 2020-10-05 Title: Geostatistics for Compositional Analysis Authors@R: c(person(given = "Raimon", diff --git a/NEWS.md b/NEWS.md index c6d5443..08ad797 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,9 +1,13 @@ +# gmGeostats 0.10.7.9004 + +* (2021-06-23) bug in validate.NfoldCrossValidation() corrected + # gmGeostats 0.10.7.9003 * (2021-04-08) exported turning bands for direct usage * (2020-10-01) bug in turning bands spherical variogram corrected -# gmGeostats 0.10.7 +# gmGeostats 0.10.7 * (2020-09-27) updated references in generalised diagonalisations; improved/reimplemented `as.logratioVariogram()` and `as.logratioVariogramAnisotropy()` methods; minor edits at `plot.logratioVariogramAnisotropy()` and `variogramModelPlot.logratioVariogram()` * (2020-09-24) openMP pragmas enclosed, to improve portability diff --git a/R/gmValidationStrategy.R b/R/gmValidationStrategy.R index 7fd58d0..256a2bf 100644 --- a/R/gmValidationStrategy.R +++ b/R/gmValidationStrategy.R @@ -98,15 +98,18 @@ validate.LeaveOneOut = function(object, strategy, ...){ #' @method validate NfoldCrossValidation #' @export validate.NfoldCrossValidation = function(object, strategy, ...){ + # manage "gstat" case if("gstat" %in% class(object)){ warning("validate: object provided is of class 'gstat', attempting 'gstat.cv(..., remove.all=TRUE, all.residuals=TRUE)'") return(gstat::gstat.cv(object, nfold=strategy$nfolds, remove.all = TRUE, all.residuals = TRUE)) } + # manage "gmSpatialModel" case object = try(as.gmSpatialModel(object)) if(class(object)=="try-error") stop("validate.NfoldCrossValidation: provided object not interpretable") # interpret the information about the n-folds provided n = strategy$nfolds m = nrow(object@data) + nms = rownames(object) if(length(n)==1){ nmax = n n0 = rep(1:n, each=ceiling(m/n)) @@ -115,21 +118,27 @@ validate.NfoldCrossValidation = function(object, strategy, ...){ nmax = max(n) } if(length(n)!=m) stop("validate.NfoldCrossValidation: provided n-fold info not interpretable (should be either an integer, or a grouping factor)") + # one fold validation function myfun = function(i){ tk = (n==i) object0 = object - object0@data=object@data[!tk,] - object0@coords=object@coords[!tk,] - rs = predict(object0, newdata = object@coords[tk,]) + object0@data=object@data[!tk,, drop=FALSE] + object0@coords=object@coords[!tk,, drop=FALSE] + rs = predict(object0, + newdata = sp::SpatialPoints(coords = object@coords[tk,, drop=FALSE], + proj4string = sp::CRS(sp::proj4string(object)), + bbox=sp::bbox(object)) + ) } + # apply to each data slice requireNamespace("foreach", quietly = TRUE) if(!strategy$doAll) return(myfun(1)) i = 1:nmax - res = foreach(i=i, .combine ="list") %dopar% myfun(i) - res = unsplit(res, f=n) + res = foreach(i=i, .combine ="rbind") %dopar% myfun(i) + # reorder and return + res = res[nms,] return(res) } - diff --git a/R/variograms.R b/R/variograms.R index 012ccdd..0026e92 100644 --- a/R/variograms.R +++ b/R/variograms.R @@ -1,1157 +1,1157 @@ -#### theoretical variogram --------------------- - -#' gmGeostats Variogram models -#' set up a D-variate variogram models -#' -#' @param type constant indicating the model of correlation function -#' @param nugget (DxD)-matrix for the nugget effect -#' @param sill (DxD)-matrix for the partial sills of the correlation function -#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details) -#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc) -#' -#' @return an object of class "gmCgram" containing the linear model of corregionalization -#' of the nugget and the structure given. -#' @details The argument `type` must be an integer indicating the model to be used. -#' Some constants are available to make reading code more understandable. That is, you can -#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce -#' a spherical model. The same applies for the following models: `vg.Gauss=0`; -#' `vg.Exp=vg.Exponential=2`. These constants are available after calling -#' `data("variogramModels")`. -#' No other model is currently available, but this data object will be -#' regularly updated. -#' The constant vector `gsi.validModels` contains all currently valid models. -#' -#' Argument `anisRange` expects a matrix $M$ such that -#' \deqn{ -#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t -#' } -#' is the (square of) the lag distance to be fed into the correlation function. -#' @family gmCgram -#' @export -#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss -#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels -#' -#' @examples -#' utils::data("variogramModels") # shortcut for all model constants -#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' plot(vm) -setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){ - utils::data("variogramModels") - stopifnot(all(dim(sill)==dim(nugget)), - ncol(sill)==nrow(sill), - type %in% gsi.validModels) - dim(sill) = c(1,dim(sill)) - dim(anisRanges) = c(1,dim(anisRanges)) - vgout <- list(type=type, - data=extraPar, - nugget=nugget, - sill=sill, #(nstru, nvar, nvar) - M=anisRanges # these are "classical" ranges (i.e. distances) - ) - class(vgout) = "gmCgram" - return(vgout) -} - - - -#' Subsetting of gmCgram variogram structures -#' -#' Extraction or combination of nested structures of a gmCgram object -#' -#' @param x `gmCgram` variogram object -#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details) -#' @param ... extra arguments for generic functionality -#' -#' @return a `gmCgram` variogram object with the desired structures only. -#' @details This function can be used to: extract the nugget (i=0), extract some -#' structures (i=indices of the structures, possibly including 0 for the nugget), -#' or filter some structures out (i=negative indices of the structures to remove; -#' nugget will always removed in this case). If you want to extract "slots" or -#' "elements" of the variogram, use the $-notation. If you want to extract variables of the -#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together) -#' is obtained by summing (+) two `gmCgram` objects. -#' @export -#' @method [[ gmCgram -#' @family gmCgram functions -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' vm[[1]] -"[[.gmCgram"<- function(x,i,...){ - nG = dim(x$M)[3] - nD = dim(x$nugget)[1] - nSo = length(i) - nSi = dim(x$M)[1] - if(i==0){# case only nugget wanted - out = with(x, list(type=type[i], - data=data[i], - nugget=nugget, - sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)), - M=structure(M[1,,], dim=c(nSo, nG, nG)))) - }else if( (0 %in% i) & !any(i<0)){ - j = i[i>0] # case some structures wanted, including nugget - out = with(x, list(type=type[j], - data=data[j], - nugget=nugget, - sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)), - M=structure(M[j,,], dim=c(nSo-1, nG, nG)))) - }else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted - if(all(i<0)) nSo = nSi-nSo - out = with(x, list(type=type[i], - data=data[i], - nugget=nugget*0, - sill=structure(sill[i,,], dim=c(nSo, nD, nD)), - M=structure(M[i,,], dim=c(nSo, nG, nG)))) - }else{# unsolvable case - stop("index set i cannot merge 0 and negative numbers") - } - class(out) = class(x) - return(out) -} - - -#' Combination of gmCgram variogram structures -#' -#' combination of nested structures of a gmCgram object -#' -#' @param x `gmCgram` variogram object -#' @param y `gmCgram` variogram object -#' @export -#' @return The combined nested structures -#' @method + gmCgram -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -"+.gmCgram" <- function(x,y) { - y = as.gmCgram(y) - stopifnot(class(y)=="gmCgram", - dim(x$sill)[-1]==dim(y$sill)[-1], - dim(x$M)[-1]==dim(y$M)[-1]) - myfun = function(A,B){ - D = dim(A)[2] - nA = dim(A)[1] - nB = dim(B)[1] - dim(A) = c(nA, D^2) - dim(B) = c(nB, D^2) - out = rbind(A, B) - dim(out) = c(nA+nB, D, D) - return(out) - } - x$type = c(x$type, y$type) - x$data= c(x$data, y$data) - x$nugget = x$nugget + y$nugget - x$sill = myfun(x$sill, y$sill) - x$M = myfun(x$M, y$M) - return(x) -} - - - - -#' Subsetting of gmCgram variogram structures -#' -#' Extraction of some variables of a gmCgram object -#' -#' @param x \code{gmCgram} variogram object -#' @param i row-indices of the variables to be kept/removed -#' @param j column-indices of the variables to be kept/removed (if only \code{i} -#' is specified, \code{j} will be taken as equal to \code{i}!) -#' @param ... extra arguments for generic functionality -#' -#' @return a \code{gmCgram} variogram object with the desired variables only. -#' @details This function can be used to extract the model for a a subset of variables. -#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}. -#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give -#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively -#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the -#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")} -#' object, otherwise it will be a regular class \code{"gmCgram"} object. -#' If you want to extract "slots" or -#' "elements" of the variogram, use the $-notation. If you want to extract variables of the -#' variogram matrices, use the `[`-notation. -#' @export -#' @method [ gmCgram -#' @family gmCgram functions -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' vm[1,1] -"[.gmCgram"<- function(x,i,j=i,...){ - nDi = length(i) - nDj = length(j) - nS = dim(x$M)[1] - out = with(x, list(type=type, - data=data, - nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)), - sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)), - M=M)) - class(out) = class(x) - if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out))) - return(out) -} - -#' Length, and number of columns or rows -#' -#' Provide number of structures, and nr of variables of an LMC of class gmCgram -#' -#' @param x gmCgram object -#' -#' @return \code{length} returns the number of structures (nugget not counted), while -#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will -#' be also valid for the sill). -#' @export -#' @aliases ncol.gmCgram nrow.gmCgram -#' @family gmCgram functions -#' -#' @method length gmCgram -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' length(vm) -#' ncol(vm) -#' nrow(vm) -length.gmCgram = function(x) length(x$type) -if(!isGeneric("ncol")){ - ncol <- function(x) UseMethod("ncol",x) - ncol.default <- base::ncol -} -if(!isGeneric("nrow")){ - nrow <- function(x) UseMethod("nrow",x) - nrow.default <- base::nrow -} -ncol.gmCgram = function(x) ncol(x$nugget) -nrow.gmCgram = function(x) nrow(x$nugget) - - -#' Convert a gmCgram object to an (evaluable) function -#' -#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function -#' -#' @param x a gmCgram object -#' @param ... extra arguments for generic functionality -#' -#' @return a \code{function} that can be evaluated normally, with an argument \code{X} -#' and possibly another argument \code{Y}; both must have the same number of columns -#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}). -#' @export -#' @method as.function gmCgram -#' @family gmCgram functions -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' vgf = as.function(vm) -#' (h = rbind(c(0,1), c(0,0), c(1,1))) -#' vgf(h) -#' predict(vm, h) -as.function.gmCgram = function(x,...){ - f <- function(X,Y=X){ - if(is(X,"Spatial")) X = sp::coordinates(X) - X = as.matrix(X) - if(is(Y,"Spatial")) Y = sp::coordinates(Y) - Y = as.matrix(Y) - stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3]) - ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE) - o = gsi.calcCgram(X,Y,x,ijEqual) - return(o) - } - return(f) -} - -#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates -#' @param object gmCgram object -#' @param newdata matrix, data.frame or Spatial object containing coordinates -#' @method predict gmCgram -#' @export -predict.gmCgram = function(object, newdata, ...){ - as.function(object)(X=newdata) -} - - -#' Convert theoretical structural functions to gmCgram format -#' -#' Convert covariance function or variogram models to the format gmCgram -#' of package gmGeostats -#' -#' @param m model to be converted -#' @param ... further parameters -#' -#' @return the covariance/variogram model, recasted to class \code{gmCgram}. -#' This is a generic function. Methods exist for objects of class -#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList} -#' (as provided by package \code{gstat}). -#' @export -#' @family gmCgram functions -as.gmCgram <- function(m, ...) UseMethod("as.gmCgram",m) - -#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format -#' @method as.gmCgram default -#' @export -as.gmCgram.default <- function(m,...) m - - - -#' Draw cuves for covariance/variogram models -#' -#' Represent a gmCgram object as a matrix of lines in several plots -#' -#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions -#' @param xlim.up range of lag values to use in plots of the upper triangle -#' @param xlim.lo range of lag values to use in plots of the lower triangle -#' @param vdir.up geograohic directions to represent in the upper triangle -#' @param vdir.lo geograohic directions to represent in the lower triangle -#' @param xlength number of discretization points to use for the curves (defaults to 200) -#' @param varnames string vector, variable names to use in the labelling of axes -#' @param add logical, should a new plot be created or stuff be added to an existing one? -#' @param commonAxis logical, is a common Y axis for all plots in a row desired? -#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted? -#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? -#' defaults to TRUE -#' @param ... further graphical parameters for the plotting function -#' -#' @return This function is called for its side effect of producing a plot: the plot will be -#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function -#' invisibly returns the graphical parameters that were active before starting the plot. Hence, -#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))}, -#' or \code{plot(x, closeplot=TRUE, ...)}. -#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference -#' is only relevant when working with the screen graphical device. -#' @export -#' @method plot gmCgram -#' @family gmCgram functions -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2)) -#' vm = v1+v2 -#' plot(vm) -#' plot(vm, cov=FALSE) -plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget), - add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){ - Dg = dim(x$M)[2] - Ns = dim(x$M)[1] - Dv = dim(x$nugget)[1] - if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="") - if(is.null(vdir.up) & is.null(vdir.lo)){ - vdir.lo = rep(0, Dg) - vdir.lo[1] = 1 - dim(vdir.lo) = c(1,Dg) - if(!is.isotropic(x)){ - aux = diag(Dg) - if(Dg==3){ - vdir.lo = aux[3,] - vdir.up = aux[-3,] - }else - vdir.lo = aux - } - } - if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up)) - if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo)) - fk = c(sqrt(3),1,3)[x$type+1]*1.25 # range to effective range factor expansion - if(is.null(xlim.up)){ - if(add){ - par(mfg=c(1,2)) - xlim.up = par()$usr[1:2] - }else if(!is.null(vdir.up)){ - maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,]))) - # here we must compute the max M projected on vd.up - xlim.up = c(0, max(fk*maxdist)) - } - } - if(is.null(xlim.lo)){ - if(add){ - par(mfg=c(2,1)) - xlim.lo = par()$usr[1:2] - }else if(!is.null(vdir.lo)){ - maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,]))) - # here we must compute the max M projected on vd.lo - xlim.lo = c(0, max(fk*maxdist)) - } - } - if(!is.null(xlim.up)){ - xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength) - }else{ xseq.up=NULL} - if(!is.null(xlim.lo)){ - xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength) - }else{ xseq.lo=NULL} - - opar = par() - opar = par_remove_readonly(opar) - - if(closeplot) on.exit(par(opar)) - - getVdens = function(vdir, xseq){ - if(is.null(vdir)|is.null(xseq)) return(NULL) - Vdens = sapply(1:nrow(vdir), function(k){ - X = outer(xseq, vdir[k,]) - Y = X[1,,drop=F]*0 - gsi.calcCgram(X,Y,x,FALSE) - }) - dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir)) - if(!cov){ - # convert to variogram if cov=FALSE - Y = matrix(rep(0,Dg), ncol=Dg) - C0 = gsi.calcCgram(Y,Y,x,FALSE) - dim(C0) = c(Dv,Dv) - Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances - } - return(Vdens) - } - Vdens.up = getVdens(vdir.up, xseq.up) - Vdens.lo = getVdens(vdir.lo, xseq.lo) - - myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...) - if(add) myplot = function(...) matlines(...) - if(!add){ - par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA) - myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") - } - for(i in 1:Dv){ - for(j in 1:Dv){ - if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){ - par(mfg=c(i+1,j,Dv+1,Dv+1)) - ylim = range(Vdens.lo[,,j,]) - if(commonAxis) ylim=range(Vdens.lo[,,j,]) - myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...) - if(i==j & !add){ - axis(side = 3) - mtext(text=varnames[i], side = 3, line=3) - mtext(text=varnames[i], side = 4, line=3) - } - } - if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){ - par(mfg=c(i,j+1,Dv+1,Dv+1)) - ylim = range(Vdens.up[,,j,]) - if(commonAxis) ylim=range(Vdens.up[,,j,]) - myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...) - if(i==j & !add){ - axis(side = 1) - mtext(text=varnames[i], side = 1, line=3) - mtext(text=varnames[i], side = 2, line=3) - } - } - }} - mtext(text="lag distance", side=1, outer = TRUE, line=0) - mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2) - invisible(opar) -} - - - - -#' Check for anisotropy of a theoretical variogram -#' -#' Checks for anisotropy of a theoretical variogram or covariance function model - -#' @param x variogram or covariance model object -#' @param tol tolerance for -#' @param ... extra arguments for generic functionality -#' -#' @return Generic function. Returns of boolean answering the question of the name, -#' or NA if object \code{x} does not contain a known theoretical variogram -#' @export -is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) } - -#' @method is.isotropic default -#' @export -is.isotropic.default = function(x, tol=1e-10, ...) NA - -#' @method is.isotropic gmCgram -#' @export -is.isotropic.gmCgram = function(x, tol=1e-10, ...){ - all(apply(x$M, 1, function(y){ - ev = eigen(y, only.values=TRUE)[[1]] - all(abs(ev-ev[1])<tol) - })) -} - -#' @method is.isotropic variogramModel -#' @export -is.isotropic.variogramModel = function(x, tol=1e-10, ...){ - anis = x[,grep("anis", colnames(x))] - all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) ) -} - -#' @method is.isotropic variogramModelList -#' @export -is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol) - -#' @method is.isotropic LMCAnisCompo -#' @export -is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){ - all(sapply(x["A",], 1, function(y){ - ev = eigen(y$A, only.values=TRUE)[[1]] - all(abs(ev-ev[1])<tol) - })) -} - - - - - - - - - -#### empirical variogram --------------------- - - - - -#' Variogram method for gmSpatialModel objects -#' -#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object -#' -#' @param object a gmSpatialModel object containing spatial data. -#' @param methodPars (currently ignored) -#' @param ... further parameters to [gstat::variogram()] -#' -#' @return Currently the function is just a convenience wrapper on -#' the variogram calculation functionalities of package "gstat", -#' and returns objects of class "\code{gstatVariogram}". Check the -#' help of \code{gstat::variogram} for further information. -#' In the near future, methods will be created, which will depend on -#' the properties of the two arguments provided, \code{object} and -#' \code{methodPars}. -#' @export -#' @importFrom gstat variogram -variogram_gmSpatialModel <- function(object, methodPars=NULL, ...){ - if(!is.null(methodPars)) stop("use 'variogram' with named parameters only") - gstat::variogram(as.gstat(object), ...) -} - - -# Variogram calculations -# -# Compute empricial variograms out of a spatial data object -# -# @param object spatial data container -# @param ... further parameters for variogram calculation -# -# @return depending on the input data, different kinds of empirical variograms -# will be produced. See appropriate method descriptions. -# -# @importFrom sp variogram -# @export -##variogram <- function(object, ...) UseMethod("variogram", object) - -# @describeIn variogram -# @method variogram default -# @export -#variogram.default <- function(object, ...){ -# return(variogram_gmSpatialModel(object, ...)) -#} - - -#' @export -setGeneric("variogram", function(object,...) standardGeneric("variogram")) - - - -#' Empirical variogram or covariance function in 2D -#' -#' compute the empirical variogram or covariance function in a 2D case study -#' -#' @param X matrix of Nx2 columns with the geographic coordinates -#' @param Z matrix or data.frame of data with dimension (N,Dv) -#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s); -#' for covariance function, a (N,Dv)-matrix or a Dv-vector giving the mean values -#' @param maxdist maximum lag distance to consider -#' @param lagNr number of lags to consider -#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving -#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks -#' @param azimuthNr number of azimuths to consider -#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving -#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks -#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction -#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10 -#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram -#' -#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They -#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead. -#' @export -#' @family gmEVario functions -#' -#' @examples -#' library(gstat) -#' data("jura", package = "gstat") -#' X = as.matrix(jura.pred[,1:2]) -#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) -#' vge = gsi.EVario2D(X,Z) -#' dim(vge) -#' dimnames(vge) -#' class(vge["gamma",1]) -#' dim(vge["gamma",1][[1]]) -#' vge["npairs",1] -#' vge["lags",1] -gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)), - maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2, - lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1), - azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr], - maxbreadth=Inf, minpairs=10, cov=FALSE){ - - # dimensions - N = nrow(X) - Dv = ncol(Z) - Dg = ncol(X) - stopifnot(N==nrow(Z)) - if(length(dim(Ff))==0){ - stopifnot(N==length(Ff)) - }else{ - stopifnot(N==nrow(Ff)) - } - # expand the information given into a set of columns stating conditions - if(length(dim(lags))==0){ - lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1]) - if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth - }else if(dim(lags)==2){ - lags = data.frame(lags) - colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)] - }else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D") - - if(length(dim(azimuths))==0){ - tol = (azimuths[2]-azimuths[1])/2 - if(is.na(tol)) tol=180 - azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol) - }else if(dim(azimuths)==2){ - azimuths = data.frame(azimuths) - colnames(azimuths) = c("minaz","maxaz") - }else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D") - - # compute residuals - if(cov){ - kk = 1 - if(dim(Z)==dim(Ff)){ - Z = Z-Ff - }else if(ncol(Z)==length(c(unlist(Ff)))){ - Z = sweep(Z, 2, Ff, "-") - } - }else{ - kk = 1 # 2 # we consider each pair only once - Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit - } - # compute pairs - ij = expand.grid(1:nrow(X), 1:nrow(X))# indices - op = ifelse(cov, "*", "-") - ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables - ZZ = aperm(ZZ, c(1,3,2,4)) - dim(ZZ) = c(N*N, Dv, Dv) - XX = X[ij[,1],]-X[ij[,2],] # locations - XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2))) - XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi - XXaz = XXaz %% pi # residual to 180° - - # output - - ## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects, - # like logratioVariogramAnisotropy - Nh = nrow(lags) - Na = nrow(azimuths) - vg = array(0, dim=c(Nh, Dv, Dv, Na)) - n = array(0, dim=c(Nh, Na)) - azs = azimuths * pi/180 - res = sapply(1:Na, function(i){ - tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz) - zz = ZZ[tk_a,,] - xxabs = XXabs[tk_a] - xxaz = XXaz[tk_a] - tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=") - if(ncol(lags)>2){ - tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=") - tk_h = tk_h & tk_b - } - n[,i] = colSums(tk_h) - for(j in 1:Nh){ - if(n[j,i]>minpairs){ - vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i]) - }else{ - vg[j,,,i]=NA - } - } - return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i])) - }) - - # output - attr(res, "directions") = gsi.azimuthInterval(azimuths) - # attr(res, "lags") = gsi.lagClass(lags) - attr(res, "type") = ifelse(cov, "covariance","semivariogram") - class(res) = "gmEVario" - return(res) -} - - - - -#' Plot empirical variograms -#' -#' Flexible plot of an empirical variogram of class gmEVario -#' -#' @param x object to print, of class gmEVario -#' @param xlim.up range of X values to be used for the diagrams of the upper triangle -#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle -#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted -#' on the upper triangle -#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle -#' @param varnames variable names to be used -#' @param type string, controlling whether to plot lines, points, etc (see \code{\link{plot}}) -#' @param add boolean, add stuff to an existing diagram? -#' @param commonAxis boolean, should vertical axes be shared by all plots in a row? -#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram) -#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? -#' defaults to TRUE -#' @param ... further parameters to \code{\link{matplot}} -#' -#' @return invisibly, the graphical parameters active before calling the function. -#' This is useful for freezing the plot if you provided `closeplot=FALSE`. -#' -#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been -#' computed along certain distances, recorded in its attributes and retrievable with command -#' \code{\link{ndirections}}. -#' @export -#' @family gmEVario functions -#' @method plot gmEVario -#' -#' @examples -#' library(gstat) -#' data("jura", package = "gstat") -#' X = as.matrix(jura.pred[,1:2]) -#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) -#' vge = gsi.EVario2D(X,Z) -#' plot(vge) -#' plot(vge, pch=22, lty=1, bg="grey") -plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, - varnames = dimnames(x$gamma)[[2]], type="o", - add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance", - closeplot=TRUE, ...){ - Dv = dim(x[1,1][[1]])[2] - if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="") - if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x) - if( any(c(vdir.up, vdir.lo)>ndirections(x))){ - stop("indicated directions (vdir.up or vdir.lo) do not exist in x") - } - if(is.null(xlim.up)){ - if(add){ - par(mfg=c(1,2)) - xlim.up = par()$usr[1:2] - }else if(!is.null(vdir.up)){ - maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) ) - xlim.up = c(0, maxdist) - } - } - if(is.null(xlim.lo)){ - if(add){ - par(mfg=c(2,1)) - xlim.lo = par()$usr[1:2] - }else if(!is.null(vdir.lo)){ - maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) ) - xlim.lo = c(0, maxdist) - } - } - - opar = par() - opar = par_remove_readonly(opar) - - if(closeplot) on.exit(par(opar)) - - myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...) - if(add) myplot = function(...) matpoints(type=type, ...) - if(!add){ - myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") - par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA) - } - for(i in 1:Dv){ - for(j in 1:Dv){ - if((i>=j)&(!is.null(vdir.lo))){ - par(mfg=c(i+1,j,Dv+1,Dv+1)) - ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j])) - if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j])) - myplot( - sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), - sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...) - if(i==j){ - axis(side = 3) - mtext(text=varnames[i], side = 3, line=3) - mtext(text=varnames[i], side = 4, line=3) - } - } - if((i<=j)&(!is.null(vdir.up))){ - par(mfg=c(i,j+1,Dv+1,Dv+1)) - ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j])) - if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j])) - myplot( - sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), - sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...) - if(i==j){ - axis(side = 1) - mtext(text=varnames[i], side = 1, line=3) - mtext(text=varnames[i], side = 2, line=3) - } - } - }} - mtext(text="lag distance", side=1, outer = TRUE, line=0) - mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2) - attr(opar, "vdir.up")=vdir.up - attr(opar, "vdir.lo")=vdir.lo - invisible(opar) -} - - - - - - -#' Convert empirical structural function to gmEVario format -#' -#' Convert empirical covariance functions or variograms to the format gmEVario -#' of package gmGeostats -#' -#' @param vgemp variogram/covariance function to be converted -#' @param ... further parameters -#' -#' @return the empirical covariance function or variogram, recasted to class -#' \code{gmEVario}. This is a generic function. Methods exist for objects of -#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy} -#' (for compositional data) and \code{gstatVariogram} -#' (from package \code{gstat}). -#' @export -#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram -#' as.gmEVario.logratioVariogramAnisotropy -#' -#' @family gmEVario functions -as.gmEVario <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)} -as.gmEVario.default <- function(vgemp,...) vgemp - - - - -#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms -#' @export -variogramModelPlot <- function(vg, ...) UseMethod("variogramModelPlot", vg) - - -#' Quick plotting of empirical and theoretical variograms -#' Quick and dirty plotting of empirical variograms/covariances with or without their models -#' @param vg empirical variogram or covariance function -#' @param model optional, theoretical variogram or covariance function -#' @param col colors to use for the several directional variograms -#' @param commonAxis boolean, should all plots in a row share the same vertical axis? -#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed -#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? -#' defaults to TRUE -#' @param ... further parameters to underlying plot or matplot functions -#' -#' @return The function is primarily called for producing a plot. However, it -#' invisibly returns the graphical parameters active before the call -#' occurred. This is useful for constructing complex diagrams, by adding layers -#' of info. If you want to "freeze" your plot, embed your call in another -#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you -#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`. -#' @export -#' @family variogramModelPlot -#' @family gmEVario functions -#' @family gmCgram functions -#' @seealso [logratioVariogram()] -#' @method variogramModelPlot gmEVario -#' -#' @examples -#' utils::data("variogramModels") -#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5))) -#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2)) -#' vm = v1+v2 -#' plot(vm, closeplot=TRUE) -#' library(gstat) -#' data("jura", package = "gstat") -#' X = as.matrix(jura.pred[,1:2]) -#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) -#' vge = gsi.EVario2D(X,Z) -#' variogramModelPlot(vge, vm) -#' -#' -variogramModelPlot.gmEVario <- function(vg, model = NULL, # gstat or variogramModelList object containing a variogram model fitted to vg - col = rev(rainbow(ndirections(vg))), - commonAxis = FALSE, - newfig = TRUE, closeplot=TRUE, ...){ - opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...) - opar = par_remove_readonly(opar) - - if(closeplot) on.exit(par(opar)) - vdir.lo = attr(opar, "vdir.lo") - vdir.up = attr(opar, "vdir.up") - if(is.null(model)) - return(invisible(opar)) - # OTHERWISE: add the curves for the model - aux = as.directorVector(attr(vg, "directions")) - if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,] - if(!is.null(vdir.up)) vdir.up = aux[vdir.up,] - opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...) - #f = as.function(as.gmCgram(gg)) - #Dv = dim(vg$gamma)[2] - #dirs = as.directorVector(attr(vg, "directions")) - #Dg = ncol(dirs) - #for(i in 1:Dv){ - # for(j in 1:Dv){ - # if((i>=j)&(!is.null(vdir.lo))){ - # par(mfg=c(i+1,j,Dv+1,Dv+1)) - # dirs.lo = dirs[vdir.lo,, drop=F] - # xlim = par()$usr[1:2] - # hd = seq(from=xlim[1], to=xlim[2], length.out = 200) - # Y = outer(hd, 1:nrow(dirs.lo), function(h,k){ - # f(rep(0,Dg), dirs.lo[k,]*h)[i,j] - # }) - # matlines(hd, Y, col=col[vdir.lo], ...) - # } - # if((i<=j)&(!is.null(vdir.up))){ - # par(mfg=c(i,j+1,Dv+1,Dv+1)) - # dirs.up = dirs[vdir.up,, drop=F] - # xlim = par()$usr[1:2] - # hd = seq(from=xlim[1], to=xlim[2], length.out = 200) - # Y = outer(hd, 1:nrow(dirs.up), function(h,k){ - # f(rep(0,Dg), dirs.up[k,]*h)[i,j] - # }) - # matlines(hd, Y, col=col[vdir.up], ...) - # } - # }} - invisible(opar) -} - - - -#' Number of directions of an empirical variogram -#' -#' Returns the number of directions at which an empirical variogram was computed -#' -#' @param x empirical variogram object -#' -#' @return Generic function. It provides the -#' number of directions at which an empirical variogram was computed -#' @export -#' @family gmEVario functions -#' @family gmCgram functions -#' @seealso [logratioVariogram()], [gstat::variogram()] -ndirections <- function(x){ UseMethod("ndirections", x) } - -#' @describeIn ndirections generic method -#' @method ndirections default -#' @export -ndirections.default = function(x) nrow(x) -#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles) -#' @method ndirections azimuth -#' @export -ndirections.azimuth = function(x) length(x) -#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles) -#' @method ndirections azimuthInterval -#' @export -ndirections.azimuthInterval = function(x) length(x[[1]]) -#' @describeIn ndirections method for empirical logratio variograms with anisotropy -#' @method ndirections logratioVariogramAnisotropy -#' @export -ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions")) -#' @describeIn ndirections method for empirical logratio variograms without anisotropy -#' @method ndirections logratioVariogram -#' @export -ndirections.logratioVariogram = function(x) 1 -#' @describeIn ndirections method for empirical gmGeostats variograms -#' @method ndirections gmEVario -#' @export -ndirections.gmEVario = function(x) ndirections(attr(x,"directions")) -#' @describeIn ndirections method for empirical gstat variograms -#' @method ndirections gstatVariogram -#' @export -ndirections.gstatVariogram = function(x){ - length(unique(paste(x$dir.hor, x$dir.ver))) -} - - - - - -#### internal functions ------------- - -gsi.azimuth = function(x){ - class(x) = c("azimuth","directionClass") - return(x) -} - -gsi.azimuthInterval = function(x){ - class(x) = c("azimuthInterval","directionClass") - return(x) -} - - - -gsi.directorVector = function(x){ - if(length(dim(x))!=2) stop("provided director vectors are not a matrix!") - class(x) = c("directorVector", "directionClass") - return(x) -} - -print.directionClass = function(x, complete=TRUE, ...){ - cat(paste("with",nrow(as.directorVector(x)),"directions\n")) - if(complete){ - print(unclass(x), ...) - } -} - - - - -as.directorVector <- function(x){ UseMethod("as.directorVector",x) } - -#' @method as.directorVector default -as.directorVector.default = function(x,...) x - -#' @method as.directorVector azimuth -as.directorVector.azimuth = function(x, D=2){ - res = cbind(cos(pi/2-x), sin(pi/2-x)) - if(D>2){ - res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res))) - } - colnames(res) = paste("v", 1:ncol(res), sep="") - return(gsi.directorVector(res)) -} - -#' @method as.directorVector azimuthInterval -as.directorVector.azimuthInterval = function(x, D=2){ - res = (x[[1]]+x[[2]])/2 - return(as.directorVector.azimuth(res)) -} - - -gsi.lagdists = function(x){ - class(x) = c("lagdist","lagClass") - return(x) -} - -gsi.lagClass = function(x){ - if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!") - class(x) = c("lagClass") - return(x) -} - -#' @method print lagClass -print.lagClass = function(x,...){ - if(is.list(x)){ - print(as.data.frame(unclass(x)), ...) - }else{ - print(unclass(x), ...) - } -} - -gsi.midValues <- function(x) UseMethod("gsi.midValues",x) - -#' @method gsi.midValues default -gsi.midValues.default = function(x) x - -#' @method gsi.midValues lagClass -gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 } - -#' @method gsi.midValues azimuthIntervals -gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 } - - - - - -## theoretical structural functions -# S3 -> S4 classes -# cat("creating variogram model classes\n") -#' @include gstatCompatibility.R -#' @include compositionsCompatibility.R -setOldClass("gmCgram") -setOldClass("LMCAnisCompo") -setOldClass("variogramModelList") -setOldClass("variogramModel") - -# abstract classes -#' @title Structural function model specification -#' @description Abstract class, containing any specification of a variogram (or covariance) model -#' @export -setClassUnion(name="ModelStructuralFunctionSpecification", - members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel")) - - - -# -# #### container class -------------- -# # An S4 class to represent a Gaussian random field specification -# # -# # @slot structure ModelStructuralFunctionSpecification. Variogram or -# # (generalised) covariance function specification, typically an object -# # obtained from a call to functions such as \code{\link{setCgram}}, -# # \code{\link{LMCAnisCompo}} or \code{gstat::vgm}. -# # @slot formula formula specifying the structure -# # of dependence of the mean of the random field w.r.to spatial coordinates -# # and/or covariables; typically it will have no left-hand-side term; -# # @slot beta numeric, a vector with as many coefficients as terms the formula -# # above requires for a full specification of the trend; if unknown, these can -# # be NAs, as many as needed. -# # -# # @return A object with the slots populated as given -# # @export -# # @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there -# setClass("gmGaussianModel", -# slots = list(structure = "ModelStructuralFunctionSpecification", -# formula="formula", -# beta = "structure") -# ) -# -# #setMethod("initialize", signature="gmGaussianModel", -# # def=function(.Object, structure, formula, beta){ -# # .Object@formula = formula -# # .Object@beta = beta -# # if(!is.null(structure)) .Object@structure = structure -# # return(.Object) -# # } -# #) - - -#### container class -------------- -# An S4 class to represent a Gaussian random field specification -# -# @slot structure ModelStructuralFunctionSpecification. Variogram or -# (generalised) covariance function specification, typically an object -# obtained from a call to functions such as \code{\link{setCgram}}, -# \code{\link{LMCAnisCompo}} or \code{gstat::vgm}. -# @slot formula formula specifying the structure -# of dependence of the mean of the random field w.r.to spatial coordinates -# and/or covariables; typically it will have no left-hand-side term; -# @slot beta numeric, a vector with as many coefficients as terms the formula -# above requires for a full specification of the trend; if unknown, these can -# be NAs, as many as needed. -# -# @return A object with the slots populated as given -# @export -# @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there -setClass("gmGaussianModel", - slots = list(structure = "ModelStructuralFunctionSpecification", - formula="formula", - beta = "numeric") -) - - -## empirical structural functions -# S3 -> S4 classes -# cat("creating empirical variogram classes\n") -setOldClass("gmEVario") -setOldClass("logratioVariogram") -setOldClass("logratioVariogramAnisotropy") -setOldClass("gstatVariogram") - - -# abstract classes -#' @title Empirical structural function specification -#' @description Abstract class, containing any specification of an empirical variogram (or covariance function, or variations) -#' @export -setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram")) - +#### theoretical variogram --------------------- + +#' gmGeostats Variogram models +#' set up a D-variate variogram models +#' +#' @param type constant indicating the model of correlation function +#' @param nugget (DxD)-matrix for the nugget effect +#' @param sill (DxD)-matrix for the partial sills of the correlation function +#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details) +#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc) +#' +#' @return an object of class "gmCgram" containing the linear model of corregionalization +#' of the nugget and the structure given. +#' @details The argument `type` must be an integer indicating the model to be used. +#' Some constants are available to make reading code more understandable. That is, you can +#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce +#' a spherical model. The same applies for the following models: `vg.Gauss=0`; +#' `vg.Exp=vg.Exponential=2`. These constants are available after calling +#' `data("variogramModels")`. +#' No other model is currently available, but this data object will be +#' regularly updated. +#' The constant vector `gsi.validModels` contains all currently valid models. +#' +#' Argument `anisRange` expects a matrix $M$ such that +#' \deqn{ +#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t +#' } +#' is the (square of) the lag distance to be fed into the correlation function. +#' @family gmCgram +#' @export +#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss +#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels +#' +#' @examples +#' utils::data("variogramModels") # shortcut for all model constants +#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' plot(vm) +setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){ + utils::data("variogramModels") + stopifnot(all(dim(sill)==dim(nugget)), + ncol(sill)==nrow(sill), + type %in% gsi.validModels) + dim(sill) = c(1,dim(sill)) + dim(anisRanges) = c(1,dim(anisRanges)) + vgout <- list(type=type, + data=extraPar, + nugget=nugget, + sill=sill, #(nstru, nvar, nvar) + M=anisRanges # these are "classical" ranges (i.e. distances) + ) + class(vgout) = "gmCgram" + return(vgout) +} + + + +#' Subsetting of gmCgram variogram structures +#' +#' Extraction or combination of nested structures of a gmCgram object +#' +#' @param x `gmCgram` variogram object +#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details) +#' @param ... extra arguments for generic functionality +#' +#' @return a `gmCgram` variogram object with the desired structures only. +#' @details This function can be used to: extract the nugget (i=0), extract some +#' structures (i=indices of the structures, possibly including 0 for the nugget), +#' or filter some structures out (i=negative indices of the structures to remove; +#' nugget will always removed in this case). If you want to extract "slots" or +#' "elements" of the variogram, use the $-notation. If you want to extract variables of the +#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together) +#' is obtained by summing (+) two `gmCgram` objects. +#' @export +#' @method [[ gmCgram +#' @family gmCgram functions +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' vm[[1]] +"[[.gmCgram"<- function(x,i,...){ + nG = dim(x$M)[3] + nD = dim(x$nugget)[1] + nSo = length(i) + nSi = dim(x$M)[1] + if(i==0){# case only nugget wanted + out = with(x, list(type=type[i], + data=data[i], + nugget=nugget, + sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)), + M=structure(M[1,,], dim=c(nSo, nG, nG)))) + }else if( (0 %in% i) & !any(i<0)){ + j = i[i>0] # case some structures wanted, including nugget + out = with(x, list(type=type[j], + data=data[j], + nugget=nugget, + sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)), + M=structure(M[j,,], dim=c(nSo-1, nG, nG)))) + }else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted + if(all(i<0)) nSo = nSi-nSo + out = with(x, list(type=type[i], + data=data[i], + nugget=nugget*0, + sill=structure(sill[i,,], dim=c(nSo, nD, nD)), + M=structure(M[i,,], dim=c(nSo, nG, nG)))) + }else{# unsolvable case + stop("index set i cannot merge 0 and negative numbers") + } + class(out) = class(x) + return(out) +} + + +#' Combination of gmCgram variogram structures +#' +#' combination of nested structures of a gmCgram object +#' +#' @param x `gmCgram` variogram object +#' @param y `gmCgram` variogram object +#' @export +#' @return The combined nested structures +#' @method + gmCgram +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +"+.gmCgram" <- function(x,y) { + y = as.gmCgram(y) + stopifnot(class(y)=="gmCgram", + dim(x$sill)[-1]==dim(y$sill)[-1], + dim(x$M)[-1]==dim(y$M)[-1]) + myfun = function(A,B){ + D = dim(A)[2] + nA = dim(A)[1] + nB = dim(B)[1] + dim(A) = c(nA, D^2) + dim(B) = c(nB, D^2) + out = rbind(A, B) + dim(out) = c(nA+nB, D, D) + return(out) + } + x$type = c(x$type, y$type) + x$data= c(x$data, y$data) + x$nugget = x$nugget + y$nugget + x$sill = myfun(x$sill, y$sill) + x$M = myfun(x$M, y$M) + return(x) +} + + + + +#' Subsetting of gmCgram variogram structures +#' +#' Extraction of some variables of a gmCgram object +#' +#' @param x \code{gmCgram} variogram object +#' @param i row-indices of the variables to be kept/removed +#' @param j column-indices of the variables to be kept/removed (if only \code{i} +#' is specified, \code{j} will be taken as equal to \code{i}!) +#' @param ... extra arguments for generic functionality +#' +#' @return a \code{gmCgram} variogram object with the desired variables only. +#' @details This function can be used to extract the model for a a subset of variables. +#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}. +#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give +#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively +#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the +#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")} +#' object, otherwise it will be a regular class \code{"gmCgram"} object. +#' If you want to extract "slots" or +#' "elements" of the variogram, use the $-notation. If you want to extract variables of the +#' variogram matrices, use the `[`-notation. +#' @export +#' @method [ gmCgram +#' @family gmCgram functions +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' vm[1,1] +"[.gmCgram"<- function(x,i,j=i,...){ + nDi = length(i) + nDj = length(j) + nS = dim(x$M)[1] + out = with(x, list(type=type, + data=data, + nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)), + sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)), + M=M)) + class(out) = class(x) + if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out))) + return(out) +} + +#' Length, and number of columns or rows +#' +#' Provide number of structures, and nr of variables of an LMC of class gmCgram +#' +#' @param x gmCgram object +#' +#' @return \code{length} returns the number of structures (nugget not counted), while +#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will +#' be also valid for the sill). +#' @export +#' @aliases ncol.gmCgram nrow.gmCgram +#' @family gmCgram functions +#' +#' @method length gmCgram +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' length(vm) +#' ncol(vm) +#' nrow(vm) +length.gmCgram = function(x) length(x$type) +if(!isGeneric("ncol")){ + ncol <- function(x) UseMethod("ncol",x) + ncol.default <- base::ncol +} +if(!isGeneric("nrow")){ + nrow <- function(x) UseMethod("nrow",x) + nrow.default <- base::nrow +} +ncol.gmCgram = function(x) ncol(x$nugget) +nrow.gmCgram = function(x) nrow(x$nugget) + + +#' Convert a gmCgram object to an (evaluable) function +#' +#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function +#' +#' @param x a gmCgram object +#' @param ... extra arguments for generic functionality +#' +#' @return a \code{function} that can be evaluated normally, with an argument \code{X} +#' and possibly another argument \code{Y}; both must have the same number of columns +#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}). +#' @export +#' @method as.function gmCgram +#' @family gmCgram functions +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' vgf = as.function(vm) +#' (h = rbind(c(0,1), c(0,0), c(1,1))) +#' vgf(h) +#' predict(vm, h) +as.function.gmCgram = function(x,...){ + f <- function(X,Y=X){ + if(is(X,"Spatial")) X = sp::coordinates(X) + X = as.matrix(X) + if(is(Y,"Spatial")) Y = sp::coordinates(Y) + Y = as.matrix(Y) + stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3]) + ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE) + o = gsi.calcCgram(X,Y,x,ijEqual) + return(o) + } + return(f) +} + +#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates +#' @param object gmCgram object +#' @param newdata matrix, data.frame or Spatial object containing coordinates +#' @method predict gmCgram +#' @export +predict.gmCgram = function(object, newdata, ...){ + as.function(object)(X=newdata) +} + + +#' Convert theoretical structural functions to gmCgram format +#' +#' Convert covariance function or variogram models to the format gmCgram +#' of package gmGeostats +#' +#' @param m model to be converted +#' @param ... further parameters +#' +#' @return the covariance/variogram model, recasted to class \code{gmCgram}. +#' This is a generic function. Methods exist for objects of class +#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList} +#' (as provided by package \code{gstat}). +#' @export +#' @family gmCgram functions +as.gmCgram <- function(m, ...) UseMethod("as.gmCgram",m) + +#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format +#' @method as.gmCgram default +#' @export +as.gmCgram.default <- function(m,...) m + + + +#' Draw cuves for covariance/variogram models +#' +#' Represent a gmCgram object as a matrix of lines in several plots +#' +#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions +#' @param xlim.up range of lag values to use in plots of the upper triangle +#' @param xlim.lo range of lag values to use in plots of the lower triangle +#' @param vdir.up geograohic directions to represent in the upper triangle +#' @param vdir.lo geograohic directions to represent in the lower triangle +#' @param xlength number of discretization points to use for the curves (defaults to 200) +#' @param varnames string vector, variable names to use in the labelling of axes +#' @param add logical, should a new plot be created or stuff be added to an existing one? +#' @param commonAxis logical, is a common Y axis for all plots in a row desired? +#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted? +#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? +#' defaults to TRUE +#' @param ... further graphical parameters for the plotting function +#' +#' @return This function is called for its side effect of producing a plot: the plot will be +#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function +#' invisibly returns the graphical parameters that were active before starting the plot. Hence, +#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))}, +#' or \code{plot(x, closeplot=TRUE, ...)}. +#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference +#' is only relevant when working with the screen graphical device. +#' @export +#' @method plot gmCgram +#' @family gmCgram functions +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2)) +#' vm = v1+v2 +#' plot(vm) +#' plot(vm, cov=FALSE) +plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget), + add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){ + Dg = dim(x$M)[2] + Ns = dim(x$M)[1] + Dv = dim(x$nugget)[1] + if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="") + if(is.null(vdir.up) & is.null(vdir.lo)){ + vdir.lo = rep(0, Dg) + vdir.lo[1] = 1 + dim(vdir.lo) = c(1,Dg) + if(!is.isotropic(x)){ + aux = diag(Dg) + if(Dg==3){ + vdir.lo = aux[3,] + vdir.up = aux[-3,] + }else + vdir.lo = aux + } + } + if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up)) + if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo)) + fk = c(sqrt(3),1,3)[x$type+1]*1.25 # range to effective range factor expansion + if(is.null(xlim.up)){ + if(add){ + par(mfg=c(1,2)) + xlim.up = par()$usr[1:2] + }else if(!is.null(vdir.up)){ + maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,]))) + # here we must compute the max M projected on vd.up + xlim.up = c(0, max(fk*maxdist)) + } + } + if(is.null(xlim.lo)){ + if(add){ + par(mfg=c(2,1)) + xlim.lo = par()$usr[1:2] + }else if(!is.null(vdir.lo)){ + maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,]))) + # here we must compute the max M projected on vd.lo + xlim.lo = c(0, max(fk*maxdist)) + } + } + if(!is.null(xlim.up)){ + xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength) + }else{ xseq.up=NULL} + if(!is.null(xlim.lo)){ + xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength) + }else{ xseq.lo=NULL} + + opar = par() + opar = par_remove_readonly(opar) + + if(closeplot) on.exit(par(opar)) + + getVdens = function(vdir, xseq){ + if(is.null(vdir)|is.null(xseq)) return(NULL) + Vdens = sapply(1:nrow(vdir), function(k){ + X = outer(xseq, vdir[k,]) + Y = X[1,,drop=F]*0 + gsi.calcCgram(X,Y,x,FALSE) + }) + dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir)) + if(!cov){ + # convert to variogram if cov=FALSE + Y = matrix(rep(0,Dg), ncol=Dg) + C0 = gsi.calcCgram(Y,Y,x,FALSE) + dim(C0) = c(Dv,Dv) + Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances + } + return(Vdens) + } + Vdens.up = getVdens(vdir.up, xseq.up) + Vdens.lo = getVdens(vdir.lo, xseq.lo) + + myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...) + if(add) myplot = function(...) matlines(...) + if(!add){ + par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA) + myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") + } + for(i in 1:Dv){ + for(j in 1:Dv){ + if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){ + par(mfg=c(i+1,j,Dv+1,Dv+1)) + ylim = range(Vdens.lo[,,j,]) + if(commonAxis) ylim=range(Vdens.lo[,,j,]) + myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...) + if(i==j & !add){ + axis(side = 3) + mtext(text=varnames[i], side = 3, line=3) + mtext(text=varnames[i], side = 4, line=3) + } + } + if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){ + par(mfg=c(i,j+1,Dv+1,Dv+1)) + ylim = range(Vdens.up[,,j,]) + if(commonAxis) ylim=range(Vdens.up[,,j,]) + myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...) + if(i==j & !add){ + axis(side = 1) + mtext(text=varnames[i], side = 1, line=3) + mtext(text=varnames[i], side = 2, line=3) + } + } + }} + mtext(text="lag distance", side=1, outer = TRUE, line=0) + mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2) + invisible(opar) +} + + + + +#' Check for anisotropy of a theoretical variogram +#' +#' Checks for anisotropy of a theoretical variogram or covariance function model + +#' @param x variogram or covariance model object +#' @param tol tolerance for +#' @param ... extra arguments for generic functionality +#' +#' @return Generic function. Returns of boolean answering the question of the name, +#' or NA if object \code{x} does not contain a known theoretical variogram +#' @export +is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) } + +#' @method is.isotropic default +#' @export +is.isotropic.default = function(x, tol=1e-10, ...) NA + +#' @method is.isotropic gmCgram +#' @export +is.isotropic.gmCgram = function(x, tol=1e-10, ...){ + all(apply(x$M, 1, function(y){ + ev = eigen(y, only.values=TRUE)[[1]] + all(abs(ev-ev[1])<tol) + })) +} + +#' @method is.isotropic variogramModel +#' @export +is.isotropic.variogramModel = function(x, tol=1e-10, ...){ + anis = x[,grep("anis", colnames(x))] + all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) ) +} + +#' @method is.isotropic variogramModelList +#' @export +is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol) + +#' @method is.isotropic LMCAnisCompo +#' @export +is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){ + all(sapply(x["A",], 1, function(y){ + ev = eigen(y$A, only.values=TRUE)[[1]] + all(abs(ev-ev[1])<tol) + })) +} + + + + + + + + + +#### empirical variogram --------------------- + + + + +#' Variogram method for gmSpatialModel objects +#' +#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object +#' +#' @param object a gmSpatialModel object containing spatial data. +#' @param methodPars (currently ignored) +#' @param ... further parameters to [gstat::variogram()] +#' +#' @return Currently the function is just a convenience wrapper on +#' the variogram calculation functionalities of package "gstat", +#' and returns objects of class "\code{gstatVariogram}". Check the +#' help of \code{gstat::variogram} for further information. +#' In the near future, methods will be created, which will depend on +#' the properties of the two arguments provided, \code{object} and +#' \code{methodPars}. +#' @export +#' @importFrom gstat variogram +variogram_gmSpatialModel <- function(object, methodPars=NULL, ...){ + if(!is.null(methodPars)) stop("use 'variogram' with named parameters only") + gstat::variogram(as.gstat(object), ...) +} + + +# Variogram calculations +# +# Compute empricial variograms out of a spatial data object +# +# @param object spatial data container +# @param ... further parameters for variogram calculation +# +# @return depending on the input data, different kinds of empirical variograms +# will be produced. See appropriate method descriptions. +# +# @importFrom sp variogram +# @export +##variogram <- function(object, ...) UseMethod("variogram", object) + +# @describeIn variogram +# @method variogram default +# @export +#variogram.default <- function(object, ...){ +# return(variogram_gmSpatialModel(object, ...)) +#} + + +#' @export +setGeneric("variogram", function(object,...) standardGeneric("variogram")) + + + +#' Empirical variogram or covariance function in 2D +#' +#' compute the empirical variogram or covariance function in a 2D case study +#' +#' @param X matrix of Nx2 columns with the geographic coordinates +#' @param Z matrix or data.frame of data with dimension (N,Dv) +#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s); +#' for covariance function, a (N,Dv)-matrix or a Dv-vector giving the mean values +#' @param maxdist maximum lag distance to consider +#' @param lagNr number of lags to consider +#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving +#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks +#' @param azimuthNr number of azimuths to consider +#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving +#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks +#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction +#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10 +#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram +#' +#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They +#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead. +#' @export +#' @family gmEVario functions +#' +#' @examples +#' library(gstat) +#' data("jura", package = "gstat") +#' X = as.matrix(jura.pred[,1:2]) +#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) +#' vge = gsi.EVario2D(X,Z) +#' dim(vge) +#' dimnames(vge) +#' class(vge["gamma",1]) +#' dim(vge["gamma",1][[1]]) +#' vge["npairs",1] +#' vge["lags",1] +gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)), + maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2, + lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1), + azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr], + maxbreadth=Inf, minpairs=10, cov=FALSE){ + + # dimensions + N = nrow(X) + Dv = ncol(Z) + Dg = ncol(X) + stopifnot(N==nrow(Z)) + if(length(dim(Ff))==0){ + stopifnot(N==length(Ff)) + }else{ + stopifnot(N==nrow(Ff)) + } + # expand the information given into a set of columns stating conditions + if(length(dim(lags))==0){ + lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1]) + if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth + }else if(dim(lags)==2){ + lags = data.frame(lags) + colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)] + }else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D") + + if(length(dim(azimuths))==0){ + tol = (azimuths[2]-azimuths[1])/2 + if(is.na(tol)) tol=180 + azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol) + }else if(dim(azimuths)==2){ + azimuths = data.frame(azimuths) + colnames(azimuths) = c("minaz","maxaz") + }else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D") + + # compute residuals + if(cov){ + kk = 1 + if(dim(Z)==dim(Ff)){ + Z = Z-Ff + }else if(ncol(Z)==length(c(unlist(Ff)))){ + Z = sweep(Z, 2, Ff, "-") + } + }else{ + kk = 1 # 2 # we consider each pair only once + Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit + } + # compute pairs + ij = expand.grid(1:nrow(X), 1:nrow(X))# indices + op = ifelse(cov, "*", "-") + ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables + ZZ = aperm(ZZ, c(1,3,2,4)) + dim(ZZ) = c(N*N, Dv, Dv) + XX = X[ij[,1],]-X[ij[,2],] # locations + XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2))) + XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi + XXaz = XXaz %% pi # residual to 180° + + # output + + ## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects, + # like logratioVariogramAnisotropy + Nh = nrow(lags) + Na = nrow(azimuths) + vg = array(0, dim=c(Nh, Dv, Dv, Na)) + n = array(0, dim=c(Nh, Na)) + azs = azimuths * pi/180 + res = sapply(1:Na, function(i){ + tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz) + zz = ZZ[tk_a,,] + xxabs = XXabs[tk_a] + xxaz = XXaz[tk_a] + tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=") + if(ncol(lags)>2){ + tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=") + tk_h = tk_h & tk_b + } + n[,i] = colSums(tk_h) + for(j in 1:Nh){ + if(n[j,i]>minpairs){ + vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i]) + }else{ + vg[j,,,i]=NA + } + } + return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i])) + }) + + # output + attr(res, "directions") = gsi.azimuthInterval(azimuths) + # attr(res, "lags") = gsi.lagClass(lags) + attr(res, "type") = ifelse(cov, "covariance","semivariogram") + class(res) = "gmEVario" + return(res) +} + + + + +#' Plot empirical variograms +#' +#' Flexible plot of an empirical variogram of class gmEVario +#' +#' @param x object to print, of class gmEVario +#' @param xlim.up range of X values to be used for the diagrams of the upper triangle +#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle +#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted +#' on the upper triangle +#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle +#' @param varnames variable names to be used +#' @param type string, controlling whether to plot lines, points, etc (see \code{\link{plot}}) +#' @param add boolean, add stuff to an existing diagram? +#' @param commonAxis boolean, should vertical axes be shared by all plots in a row? +#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram) +#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? +#' defaults to TRUE +#' @param ... further parameters to \code{\link{matplot}} +#' +#' @return invisibly, the graphical parameters active before calling the function. +#' This is useful for freezing the plot if you provided `closeplot=FALSE`. +#' +#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been +#' computed along certain distances, recorded in its attributes and retrievable with command +#' \code{\link{ndirections}}. +#' @export +#' @family gmEVario functions +#' @method plot gmEVario +#' +#' @examples +#' library(gstat) +#' data("jura", package = "gstat") +#' X = as.matrix(jura.pred[,1:2]) +#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) +#' vge = gsi.EVario2D(X,Z) +#' plot(vge) +#' plot(vge, pch=22, lty=1, bg="grey") +plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, + varnames = dimnames(x$gamma)[[2]], type="o", + add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance", + closeplot=TRUE, ...){ + Dv = dim(x[1,1][[1]])[2] + if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="") + if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x) + if( any(c(vdir.up, vdir.lo)>ndirections(x))){ + stop("indicated directions (vdir.up or vdir.lo) do not exist in x") + } + if(is.null(xlim.up)){ + if(add){ + par(mfg=c(1,2)) + xlim.up = par()$usr[1:2] + }else if(!is.null(vdir.up)){ + maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) ) + xlim.up = c(0, maxdist) + } + } + if(is.null(xlim.lo)){ + if(add){ + par(mfg=c(2,1)) + xlim.lo = par()$usr[1:2] + }else if(!is.null(vdir.lo)){ + maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) ) + xlim.lo = c(0, maxdist) + } + } + + opar = par() + opar = par_remove_readonly(opar) + + if(closeplot) on.exit(par(opar)) + + myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...) + if(add) myplot = function(...) matpoints(type=type, ...) + if(!add){ + myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n") + par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA) + } + for(i in 1:Dv){ + for(j in 1:Dv){ + if((i>=j)&(!is.null(vdir.lo))){ + par(mfg=c(i+1,j,Dv+1,Dv+1)) + ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j])) + if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j])) + myplot( + sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), + sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...) + if(i==j){ + axis(side = 3) + mtext(text=varnames[i], side = 3, line=3) + mtext(text=varnames[i], side = 4, line=3) + } + } + if((i<=j)&(!is.null(vdir.up))){ + par(mfg=c(i,j+1,Dv+1,Dv+1)) + ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j])) + if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j])) + myplot( + sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])), + sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...) + if(i==j){ + axis(side = 1) + mtext(text=varnames[i], side = 1, line=3) + mtext(text=varnames[i], side = 2, line=3) + } + } + }} + mtext(text="lag distance", side=1, outer = TRUE, line=0) + mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2) + attr(opar, "vdir.up")=vdir.up + attr(opar, "vdir.lo")=vdir.lo + invisible(opar) +} + + + + + + +#' Convert empirical structural function to gmEVario format +#' +#' Convert empirical covariance functions or variograms to the format gmEVario +#' of package gmGeostats +#' +#' @param vgemp variogram/covariance function to be converted +#' @param ... further parameters +#' +#' @return the empirical covariance function or variogram, recasted to class +#' \code{gmEVario}. This is a generic function. Methods exist for objects of +#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy} +#' (for compositional data) and \code{gstatVariogram} +#' (from package \code{gstat}). +#' @export +#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram +#' as.gmEVario.logratioVariogramAnisotropy +#' +#' @family gmEVario functions +as.gmEVario <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)} +as.gmEVario.default <- function(vgemp,...) vgemp + + + + +#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms +#' @export +variogramModelPlot <- function(vg, ...) UseMethod("variogramModelPlot", vg) + + +#' Quick plotting of empirical and theoretical variograms +#' Quick and dirty plotting of empirical variograms/covariances with or without their models +#' @param vg empirical variogram or covariance function +#' @param model optional, theoretical variogram or covariance function +#' @param col colors to use for the several directional variograms +#' @param commonAxis boolean, should all plots in a row share the same vertical axis? +#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed +#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? +#' defaults to TRUE +#' @param ... further parameters to underlying plot or matplot functions +#' +#' @return The function is primarily called for producing a plot. However, it +#' invisibly returns the graphical parameters active before the call +#' occurred. This is useful for constructing complex diagrams, by adding layers +#' of info. If you want to "freeze" your plot, embed your call in another +#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you +#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`. +#' @export +#' @family variogramModelPlot +#' @family gmEVario functions +#' @family gmCgram functions +#' @seealso [logratioVariogram()] +#' @method variogramModelPlot gmEVario +#' +#' @examples +#' utils::data("variogramModels") +#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5))) +#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2)) +#' vm = v1+v2 +#' plot(vm, closeplot=TRUE) +#' library(gstat) +#' data("jura", package = "gstat") +#' X = as.matrix(jura.pred[,1:2]) +#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")]) +#' vge = gsi.EVario2D(X,Z) +#' variogramModelPlot(vge, vm) +#' +#' +variogramModelPlot.gmEVario <- function(vg, model = NULL, # gstat or variogramModelList object containing a variogram model fitted to vg + col = rev(rainbow(ndirections(vg))), + commonAxis = FALSE, + newfig = TRUE, closeplot=TRUE, ...){ + opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...) + opar = par_remove_readonly(opar) + + if(closeplot) on.exit(par(opar)) + vdir.lo = attr(opar, "vdir.lo") + vdir.up = attr(opar, "vdir.up") + if(is.null(model)) + return(invisible(opar)) + # OTHERWISE: add the curves for the model + aux = as.directorVector(attr(vg, "directions")) + if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,] + if(!is.null(vdir.up)) vdir.up = aux[vdir.up,] + opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...) + #f = as.function(as.gmCgram(gg)) + #Dv = dim(vg$gamma)[2] + #dirs = as.directorVector(attr(vg, "directions")) + #Dg = ncol(dirs) + #for(i in 1:Dv){ + # for(j in 1:Dv){ + # if((i>=j)&(!is.null(vdir.lo))){ + # par(mfg=c(i+1,j,Dv+1,Dv+1)) + # dirs.lo = dirs[vdir.lo,, drop=F] + # xlim = par()$usr[1:2] + # hd = seq(from=xlim[1], to=xlim[2], length.out = 200) + # Y = outer(hd, 1:nrow(dirs.lo), function(h,k){ + # f(rep(0,Dg), dirs.lo[k,]*h)[i,j] + # }) + # matlines(hd, Y, col=col[vdir.lo], ...) + # } + # if((i<=j)&(!is.null(vdir.up))){ + # par(mfg=c(i,j+1,Dv+1,Dv+1)) + # dirs.up = dirs[vdir.up,, drop=F] + # xlim = par()$usr[1:2] + # hd = seq(from=xlim[1], to=xlim[2], length.out = 200) + # Y = outer(hd, 1:nrow(dirs.up), function(h,k){ + # f(rep(0,Dg), dirs.up[k,]*h)[i,j] + # }) + # matlines(hd, Y, col=col[vdir.up], ...) + # } + # }} + invisible(opar) +} + + + +#' Number of directions of an empirical variogram +#' +#' Returns the number of directions at which an empirical variogram was computed +#' +#' @param x empirical variogram object +#' +#' @return Generic function. It provides the +#' number of directions at which an empirical variogram was computed +#' @export +#' @family gmEVario functions +#' @family gmCgram functions +#' @seealso [logratioVariogram()], [gstat::variogram()] +ndirections <- function(x){ UseMethod("ndirections", x) } + +#' @describeIn ndirections generic method +#' @method ndirections default +#' @export +ndirections.default = function(x) nrow(x) +#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles) +#' @method ndirections azimuth +#' @export +ndirections.azimuth = function(x) length(x) +#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles) +#' @method ndirections azimuthInterval +#' @export +ndirections.azimuthInterval = function(x) length(x[[1]]) +#' @describeIn ndirections method for empirical logratio variograms with anisotropy +#' @method ndirections logratioVariogramAnisotropy +#' @export +ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions")) +#' @describeIn ndirections method for empirical logratio variograms without anisotropy +#' @method ndirections logratioVariogram +#' @export +ndirections.logratioVariogram = function(x) 1 +#' @describeIn ndirections method for empirical gmGeostats variograms +#' @method ndirections gmEVario +#' @export +ndirections.gmEVario = function(x) ndirections(attr(x,"directions")) +#' @describeIn ndirections method for empirical gstat variograms +#' @method ndirections gstatVariogram +#' @export +ndirections.gstatVariogram = function(x){ + length(unique(paste(x$dir.hor, x$dir.ver))) +} + + + + + +#### internal functions ------------- + +gsi.azimuth = function(x){ + class(x) = c("azimuth","directionClass") + return(x) +} + +gsi.azimuthInterval = function(x){ + class(x) = c("azimuthInterval","directionClass") + return(x) +} + + + +gsi.directorVector = function(x){ + if(length(dim(x))!=2) stop("provided director vectors are not a matrix!") + class(x) = c("directorVector", "directionClass") + return(x) +} + +print.directionClass = function(x, complete=TRUE, ...){ + cat(paste("with",nrow(as.directorVector(x)),"directions\n")) + if(complete){ + print(unclass(x), ...) + } +} + + + + +as.directorVector <- function(x){ UseMethod("as.directorVector",x) } + +#' @method as.directorVector default +as.directorVector.default = function(x,...) x + +#' @method as.directorVector azimuth +as.directorVector.azimuth = function(x, D=2){ + res = cbind(cos(pi/2-x), sin(pi/2-x)) + if(D>2){ + res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res))) + } + colnames(res) = paste("v", 1:ncol(res), sep="") + return(gsi.directorVector(res)) +} + +#' @method as.directorVector azimuthInterval +as.directorVector.azimuthInterval = function(x, D=2){ + res = (x[[1]]+x[[2]])/2 + return(as.directorVector.azimuth(res)) +} + + +gsi.lagdists = function(x){ + class(x) = c("lagdist","lagClass") + return(x) +} + +gsi.lagClass = function(x){ + if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!") + class(x) = c("lagClass") + return(x) +} + +#' @method print lagClass +print.lagClass = function(x,...){ + if(is.list(x)){ + print(as.data.frame(unclass(x)), ...) + }else{ + print(unclass(x), ...) + } +} + +gsi.midValues <- function(x) UseMethod("gsi.midValues",x) + +#' @method gsi.midValues default +gsi.midValues.default = function(x) x + +#' @method gsi.midValues lagClass +gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 } + +#' @method gsi.midValues azimuthIntervals +gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 } + + + + + +## theoretical structural functions +# S3 -> S4 classes +# cat("creating variogram model classes\n") +#' @include gstatCompatibility.R +#' @include compositionsCompatibility.R +setOldClass("gmCgram") +setOldClass("LMCAnisCompo") +setOldClass("variogramModelList") +setOldClass("variogramModel") + +# abstract classes +#' @title Structural function model specification +#' @description Abstract class, containing any specification of a variogram (or covariance) model +#' @export +setClassUnion(name="ModelStructuralFunctionSpecification", + members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel")) + + + +# +# #### container class -------------- +# # An S4 class to represent a Gaussian random field specification +# # +# # @slot structure ModelStructuralFunctionSpecification. Variogram or +# # (generalised) covariance function specification, typically an object +# # obtained from a call to functions such as \code{\link{setCgram}}, +# # \code{\link{LMCAnisCompo}} or \code{gstat::vgm}. +# # @slot formula formula specifying the structure +# # of dependence of the mean of the random field w.r.to spatial coordinates +# # and/or covariables; typically it will have no left-hand-side term; +# # @slot beta numeric, a vector with as many coefficients as terms the formula +# # above requires for a full specification of the trend; if unknown, these can +# # be NAs, as many as needed. +# # +# # @return A object with the slots populated as given +# # @export +# # @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there +# setClass("gmGaussianModel", +# slots = list(structure = "ModelStructuralFunctionSpecification", +# formula="formula", +# beta = "structure") +# ) +# +# #setMethod("initialize", signature="gmGaussianModel", +# # def=function(.Object, structure, formula, beta){ +# # .Object@formula = formula +# # .Object@beta = beta +# # if(!is.null(structure)) .Object@structure = structure +# # return(.Object) +# # } +# #) + + +#### container class -------------- +# An S4 class to represent a Gaussian random field specification +# +# @slot structure ModelStructuralFunctionSpecification. Variogram or +# (generalised) covariance function specification, typically an object +# obtained from a call to functions such as \code{\link{setCgram}}, +# \code{\link{LMCAnisCompo}} or \code{gstat::vgm}. +# @slot formula formula specifying the structure +# of dependence of the mean of the random field w.r.to spatial coordinates +# and/or covariables; typically it will have no left-hand-side term; +# @slot beta numeric, a vector with as many coefficients as terms the formula +# above requires for a full specification of the trend; if unknown, these can +# be NAs, as many as needed. +# +# @return A object with the slots populated as given +# @export +# @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there +setClass("gmGaussianModel", + slots = list(structure = "ModelStructuralFunctionSpecification", + formula="formula", + beta = "numeric") +) + + +## empirical structural functions +# S3 -> S4 classes +# cat("creating empirical variogram classes\n") +setOldClass("gmEVario") +setOldClass("logratioVariogram") +setOldClass("logratioVariogramAnisotropy") +setOldClass("gstatVariogram") + + +# abstract classes +#' @title Empirical structural function specification +#' @description Abstract class, containing any specification of an empirical variogram (or covariance function, or variations) +#' @export +setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram")) + diff --git a/cran-comments.md b/cran-comments.md index f066d45..57293cf 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,39 +1,40 @@ - ## Test environments +## Test environments - * Linux: Ubuntu 18.04.4LTS (local) - - R 3.4.4 (production) - - R devel 2020-07-28 r78930 (test) - - R patched 4.0.2 r78930 (test) - * Windows 7 Enterprise (test) - - R 3.5.1 (test) +* Linux: Ubuntu 18.04.4LTS (local) + - R 3.4.4 (production) + - R devel 2020-07-28 r78930 (test) + - R patched 4.0.2 r78930 (test) +* Windows 7 Enterprise (test) + - R 3.5.1 (test) + - R 4.0.2 (test) - ## R CMD check results +## R CMD check results 0 errors | 0 warnings | 0 notes - ## This is a resubmission +## This is a resubmission - ``` - Dear maintainer, +``` +Dear maintainer, - Please see the problems shown on +Please see the problems shown on <https://cran.r-project.org/web/checks/check_results_gmGeostats.html>. Please correct before 2020-10-03 to safely retain your package on CRAN. - The CRAN Team - ``` +The CRAN Team +``` - ... the sympthom being an error while #include <omp.h> in r-release-macos-x86_64, we identified the problem as a lack of appropriate linkage of OpenMP. +... the sympthom being an error while #include <omp.h> in r-release-macos-x86_64, we identified the problem as a lack of appropriate linkage of OpenMP. - Solution: +Solution: 1.- the header inclusion and all usages of #pragma directives were enclosed in conditional structures - #ifdef _OPENMP +#ifdef _OPENMP ... - #endif +#endif - 2. `$(SHLIB_OPENMP_CFLAGS)` was added to PKG_CFLAGS and PKG_LIBS fields in Makevars files + 2. `$(SHLIB_OPENMP_CFLAGS)` was added to PKG_CFLAGS and PKG_LIBS fields in Makevars files NOTE: we do not have access to any MacOS machine to test that our solution is effective. Our apologies if this is not working! \ No newline at end of file diff --git a/src/gmGeostats.c b/src/gmGeostats.c index 4b689ab..e003d2c 100644 --- a/src/gmGeostats.c +++ b/src/gmGeostats.c @@ -341,6 +341,7 @@ void getUnitvec( unitvec[0] = cos(d1)*d3; unitvec[1] = sin(d1)*d3; } else if( dimX==2 ) { + Rprintf("Warning: gmGeostatsC.getUnitvec in 2D is incompatible with spherical variograms"); d1=invBitExp2(ip); unitvec[0] = cos(d1*M_PI); unitvec[1] = sin(d1*M_PI); -- GitLab