Skip to content
Snippets Groups Projects
Commit ba7a0647 authored by Alexander Böhmländer's avatar Alexander Böhmländer
Browse files

Added new function to calculate freezing point depression for different aqueous solutions.

parent 4ed06a24
No related branches found
No related tags found
No related merge requests found
......@@ -1903,3 +1903,50 @@ def find_half_collection_efficiency(efficiency: npt.ArrayLike) -> tuple[int, int
first_half_point = np.abs(lower_array - 0.5).argmin()
second_half_point = np.abs(upper_array - 0.5).argmin()
return (first_half_point, second_half_point+max_value)
def freezing_point_depression(molatility_of_salt: float, salt: str = 'NaCl') -> float:
"""
Function to calculate the freezing point depression of aqueous solutions
containing four different salts (NaCl, KCl, LiCl, MgCl2) using fit parameters
from _[1]
Parameters
----------
molatility_of_salt : float
DESCRIPTION.
salt : str, optional
Salt. The default is 'NaCl'.
Returns
-------
float
Freezing point depression in K.
References
----------
[1] Cintia P. Lamas, Carlos Vega, Eva G. Noya; Freezing point depression
of salt aqueous solutions using the Madrid-2019 model. J. Chem. Phys.
7 April 2022; 156 (13): 134503. https://doi.org/10.1063/5.0085051
"""
m = molatility_of_salt # mol/kg
match salt:
case 'NaCl':
v = 2
b = -1.639
c = 0.683
case 'KCl':
v = 2
b = -1.565
c = 0.665
case 'LiCl':
v = 2
b = -2.315
c = 1.605
case 'MgCl2':
v = 3
b = -6.859
c = 5.676
delta_T = -v * 1.998 * m - b * m**(3/2) - c * m**2
return delta_T
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment