Newer
Older
#### validation specifications --------------
#' Specify a strategy for validation of a spatial model
#'
#' Specify a strategy to validate a spatial model. Currently only
#' leave-one-out and n-fold cross-validation are available, each specified
#' by its own function. Leave-one-out takes no parameter.
#'
#' @param nfolds Either, one integer between 2 and the number of hard conditioning data,
#' specifying how many groups do you want to split the data available; or else a factor
#' specifying these groups
#' @param doAll boolean; should each group be used once for validating the model constructed
#' with the remaining groups; else, only the first group will be used for validation, and the other
#' will be used for training.
#' @param ... ignored
#'
#' @return An object, a list with an appropriate class, controlling the strategy specified.
#' This can be of class "NfoldCrossValidation" or of class c("LeaveOneOut", "NfoldCrossValidation").
#' @export
#' @family validation functions
#'
#' @examples
#' NfoldCrossValidation(nfolds=5, doAll=FALSE)
NfoldCrossValidation = function(nfolds=2, doAll=TRUE, ...){
res = list(strategy="n-fold cross-validation", nfolds=nfolds, doAll=doAll)
class(res) = "NfoldCrossValidation"
return(res)
}
#' Specify the leave-one-out strategy for validation of a spatial model
#'
#' Function to specify the leave-one-out strategy for validation of a spatial model
#'
#' @return an object of class c("LeaveOneOut", "NfoldCrossValidation") to be used
#' in a call to [validate()]
#' @family validation functions
#'
#' @export
#' @examples
#' LeaveOneOut()
LeaveOneOut = function(){
res = list(strategy="leave-one-out")
class(res) = c("LeaveOneOut", "NfoldCrossValidation")
return(res)
}
#### validation methods -------------
#' Validate a spatial model
#'
#' Validate a spatial model by predicting some values. Typically this will be a validation set,
#' or else some subset of the conditing data.
#'
#' @param object spatial model object, typically of class [gstat::gstat()] or [gmSpatialModel-class]
#' @param strategy which strategy to follow for the validation? see functions in 'see also' below.
#' @param ... generic parameters, ignored.
#'
#' @return A data frame of predictions (possibly with kriging variances and covariances, or equivalent
#' uncertainty measures) for each element of the validation set
#' @export
#' @family validation functions
#' @family accuracy functions
#' @examples
#' data("Windarling")
#' X = Windarling[,c("Easting","Northing")]
#' Z = compositions::acomp(Windarling[,c(9:12,16)])
#' gm = make.gmCompositionalGaussianSpatialModel(data=Z, coords=X)
#' vg = variogram(gm)
#' md = gstat::vgm(range=30, model="Sph", nugget=1, psill=1)
#' gs = fit_lmc(v=vg, g=gm, model=md)
#' \dontrun{ v1 = validate(gs, strategy=LeaveOneOut()) # quite slow }
#' vs2 = NfoldCrossValidation(nfolds=sample(1:10, nrow(X), replace=TRUE))
#' vs2
#' \dontrun{ v2 = validate(gs, strategy=vs2) # quite slow }
validate <- function(object, strategy, ...) UseMethod("validate", strategy)
#' @describeIn validate Validate a spatial model
#' @method validate LeaveOneOut
validate.LeaveOneOut = function(object, strategy, ...){
if(inherits(object,what="gstat",which=FALSE)){
n = nrow(object$data[[1]]$data)
}else if(is(object, "gmSpatialModel")){
n = nrow(object@data)
}else{
object = try(as.gmSpatialModel(object))

Raimon Tolosana-Delgado
committed
if(inherits(object,"try-error")) stop("validate.LeaveOneOut: provided object not interpretable")
v = validate(object, NfoldCrossValidation(nfolds=n, doAll=TRUE))
return(v)
#' @describeIn validate Validate a spatial model
#' @method validate NfoldCrossValidation
validate.NfoldCrossValidation = function(object, strategy, ...){
# manage "gstat" case
warning("validate: object provided is of class 'gstat', attempting 'gstat.cv(..., remove.all=TRUE, all.residuals=TRUE)'")
return(gstat::gstat.cv(object, nfold=strategy$nfolds, remove.all = TRUE, all.residuals = TRUE))
}
object = try(as.gmSpatialModel(object))

Raimon Tolosana-Delgado
committed
if(inherits(object,"try-error")) stop("validate.NfoldCrossValidation: provided object not interpretable")
# interpret the information about the n-folds provided
n = strategy$nfolds
m = nrow(object@data)
if(length(n)==1){
nmax = n
n0 = rep(1:n, each=ceiling(m/n))
n = sample(x=n0, size=m)
}else{
nmax = max(n)
}
if(length(n)!=m) stop("validate.NfoldCrossValidation: provided n-fold info not interpretable (should be either an integer, or a grouping factor)")
myfun = function(i){
tk = (n==i)
object0 = object
object0@data=object@data[!tk,, drop=FALSE]
object0@coords=object@coords[!tk,, drop=FALSE]
rs = predict(object0,
newdata = sp::SpatialPoints(coords = object@coords[tk,, drop=FALSE],
proj4string = sp::CRS(sp::proj4string(object)),
bbox=sp::bbox(object))
)
requireNamespace("foreach", quietly = TRUE)
if(!strategy$doAll) return(myfun(1))
i = 1:nmax
res = foreach(i=i, .combine ="rbind") %dopar% myfun(i)
# reorder and return
res = res[nms,]