Newer
Older

Raimon Tolosana-Delgado
committed
#### gstat easy/easier interface for multivariate data
# setOldClass("gstat") ### breaks down

Raimon Tolosana-Delgado
committed
#' Fit an LMC to an empirical variogram
#'
#' Fit a linear model of coregionalisation to an empirical variogram
#'
#' @param v empirical variogram
#' @param ... further parameters
#' @export
#' @return Method fit_lmc.gstatVariogram is a wrapper around [gstat::fit.lmc()], that calls this function
#' and gives the resulting model its appropriate class (c("variogramModelList", "list")).
#' Method fit_lmc.default returns the fitted lmc (this function currently uses gstat as a
#' calculation machine, but this behavior can change in the future)
#' @aliases fit_lmc fit_lmc.default fit_lmc.logratioVariogramAnisotropy
#'
#' @examples
#' data("jura", package = "gstat")
#' X = jura.pred[,1:2]
#' Zc = jura.pred[,7:13]
#' gg = make.gmCompositionalGaussianSpatialModel(Zc, X, V="alr", formula = ~1)
#' vg = variogram(gg)
#' md = gstat::vgm(model="Sph", psill=1, nugget=1, range=1.5)
#' gg = fit_lmc(v=vg, g=gg, model=md)
#' variogramModelPlot(vg, model=gg)
fit_lmc <- function(v, ...) UseMethod("fit_lmc", v)
#' @describeIn fit_lmc wrapper around gstat::fit.lmc method
#' @param g spatial data object, containing the original data
#' @param model LMC or variogram model to fit
#' @param fit.ranges logical, should ranges be modified? (default=FALSE)
#' @param fit.lmc logical, should the nugget and partial sill matrices be modified (default=TRUE)
#' @param correct.diagonal positive value slightly larger than 1, for multiplying the direct variogram
#' models and reduce the risk of numerically negative eigenvalues

Raimon Tolosana-Delgado
committed
#' @export
#' @method fit_lmc gstatVariogram
fit_lmc.gstatVariogram <- function(v, g, model, fit.ranges = FALSE, fit.lmc = !fit.ranges, correct.diagonal = 1.0, ...){
res = gstat::fit.lmc(as.gstatVariogram(v, ...), as.gstat(g, ...), as.variogramModel(model, ...),
fit.ranges = fit.ranges, fit.lmc = fit.lmc, correct.diagonal=correct.diagonal)

Raimon Tolosana-Delgado
committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
class(res$model) = c("variogramModelList", "list")
return(res)
}
#' @describeIn fit_lmc flexible wrapper method for any class for which methods
#' for [as.gstatVariogram()], [as.gstat()] and [as.variogramModel()] exist.
#' In the future there may be direct specialised implementations not depending on
#' package gstat.
#' @export
#' @method fit_lmc default
fit_lmc.default <- function(v, g, model,...){
origclass = class(g)
res = fit_lmc(as.gstatVariogram(v), as.gstat(g), as.variogramModel(model), ...)$model
# activate in the future
res = as(res, origclass)
return(res)
}
#' @describeIn fit_lmc method for logratioVariogram wrapping compositions::fit.lmc.
#' In the future there may be direct specialised implementations,
#' including anisotropy (not yet possible).
#' @export
#' @method fit_lmc logratioVariogram
fit_lmc.logratioVariogram <- function(v, g, model,...){
res = compositions::fit.lmc(as.logratioVariogram(v), as.CompLinModCoReg(model), ...)
return(res)
}
#' Convert a regionalized data container to gstat
#'
#' Convert a regionalized data container to a "gstat" model object
#'
#' @param object regionalized data container
#' @param ... accessory parameters (currently not used)
#'
#' @return A regionalized data container of class "gstat",
#' eventually with variogram model included. See [gstat::gstat()] for more info.
#' @aliases as.gstat.default
#' @export
#'
#' @examples
#' data("jura", package = "gstat")
#' X = jura.pred[,1:2]
#' Zc = jura.pred[,7:13]
#' gg = make.gmCompositionalGaussianSpatialModel(Zc, X, V="alr", formula = ~1)
#' as.gstat(gg)
as.gstat <- function(object, ...) UseMethod("as.gstat", object)
#' @describeIn as.gstat default does nothing
#' @method as.gstat default
as.gstat.default <- function(object, ...){
return(object)
}
setGeneric("as.gstat", as.gstat)
# packs a regionalized composition and their geographic coordinates into a
# gstat object after an appropriate logratio representation
# coords: geographic coordinates (it works sure with data.frame)
# compo: an acomp object (NOT TRANSFORMED)
# V: can be either the matrix PSI (of the notes) or the strings "clr", "ilr" or "alr"
# nscore: should data be marginally transformed to normal scores?
# formulaterm: term for the formula argument of gstat (to control between UK and OK/SK)
# ...: further arguments to gstat (e.g. for controlling neighbourhood or specyfing a mean for SK)
compo2gstatLR = function(coords, compo, V=ilrBase(compo),
lrvgLMC=NULL, nscore=FALSE,
formulaterm = "~1", prefix=NULL, ...){
# prepare constants
V0 = V
D = ncol(compo)
o = gsi.produceV(V=V,D=D,orignames=colnames(compo),giveInv=FALSE, prefix=prefix)
prefix = o$prefix
V = o$V
# compute data (in lrs or in normal scores), set variable names

Raimon Tolosana-Delgado
committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
if(nscore){
source("nscore.R") # load the nscore.R functions
prefix= paste("NS",prefix,sep="")
Zlr = sapply(1:ncol(V), function(i){
rs = nscore(Zlr[,i])
aux = rs$nscore
attr(aux,"trn.table") = rs$trn.table # this ensures that the backtransformation is stored in the object
return(data.frame(aux))
})
Zlr = as.data.frame(Zlr)
}
if(is.null(colnames(Zlr))) colnames(Zlr) = paste(prefix, 1:(D-1), sep="")
# create gstat object
spatdescr = paste("~",c(paste(colnames(coords),collapse=" + ")), sep="")
gg = NULL
for(i in 1:(D-1)){
id = colnames(Zlr)[i]
frm = paste(id, formulaterm, sep="")
gg = gstat::gstat(gg, id=id, formula = stats::as.formula(frm), locations=stats::as.formula(spatdescr), data=data.frame(coords, Zlr), ...)
}
# if a logratio LMC was provided, convert it to gstat variogramModelList
# and attach it
if(!is.null(lrvgLMC) & !nscore){
# space for a future conversion of variation-variogram models to gstat-LR-variograms
gg$model = as.variogramModel(lrvgLMC, V=V0, prefix=prefix)
}
# return
return(gg)
}
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
## version for rmult
rmult2gstat = function(coords, data, V="cdt",
vgLMC=NULL, nscore=FALSE,
formulaterm = "~1", prefix=NULL, ...){
P = ncol(data)
if(nscore){
source("nscore.R") # load the nscore.R functions
prefix= paste("NS",prefix,sep="")
Z = sapply(1:P, function(i){
rs = nscore(data[,i])
aux = rs$nscore
attr(aux,"trn.table") = rs$trn.table # this ensures that the backtransformation is stored in the object
return(data.frame(aux))
})
Z = as.data.frame(Z)
}else{
Z = data
}
if(is.null(colnames(Z))) colnames(Z) = paste(prefix, 1:P, sep="")
# create gstat object
spatdescr = paste("~",c(paste(colnames(coords),collapse=" + ")), sep="")
gg = NULL
for(i in 1:P){
id = colnames(Z)[i]
frm = paste(id, formulaterm, sep="")
gg = gstat::gstat(gg, id=id, formula = stats::as.formula(frm), locations=stats::as.formula(spatdescr), data=data.frame(coords, Z), ...)
}
# if a logratio LMC was provided, convert it to gstat variogramModelList
# and attach it
if(!is.null(vgLMC) & !nscore){
# space for a future conversion of variation-variogram models to gstat-LR-variograms
gg$model = as.variogramModel(vgLMC, prefix=prefix)
}
# return
return(gg)
}

Raimon Tolosana-Delgado
committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
getGstatData = function(gg # gstat object
){
return(gg$data[[1]]$data@data)
}
#' Quick plotting of empirical and theoretical variograms
#' Quick and dirty plotting of empirical variograms/covariances with or without their models
#' @param vg empirical variogram or covariance function
#' @param model optional, theoretical variogram or covariance function
#' @param col colors to use for the several directional variograms
#' @param commonAxis boolean, should all plots in a row share the same vertical axis?
#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further parameters to underlying plot or matplot functions
#'
#' @return The function is primarily called for producing a plot. However, it
#' invisibly returns the graphical parameters active before the call
#' occurred. This is useful for constructing complex diagrams, by giving
#' argument `closeplot=FALSE` and then adding layers
#' of information. If you want to "freeze" your plot, either give `closeplot=TRUE` or
#' embed your call in another call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}.
#' @export
#' @importFrom gstat vgm
#' @seealso `gstat::plot.gstatVariogram()`
#' @method variogramModelPlot gstatVariogram
#' @family variogramModelPlot
#' @examples
#' data("jura", package="gstat")
#' X = jura.pred[,1:2]
#' Zc = jura.pred[,7:13]
#' gg = make.gmCompositionalGaussianSpatialModel(Zc, X, V="alr", formula = ~1)
#' vg = variogram(gg)
#' md = gstat::vgm(model="Sph", psill=1, nugget=1, range=1.5)
#' gg = fit_lmc(v=vg, g=gg, model=md)
#' variogramModelPlot(vg, model=gg)
variogramModelPlot.gstatVariogram =
function(vg, # gstatVariogram object
model = NULL, # gstat or variogramModelList object containing a variogram model fitted to vg
col = rev(rainbow(1+length(unique(vg$dir.hor)))),
commonAxis = FALSE,
newfig = TRUE,
closeplot = TRUE,
...
){
# capture graphical parameters
dotlist = list(...)
# check class of gg object and extract variable names
if(is.null(model)){
noms = levels(vg$id)
vrnames = sort(unique(unlist(strsplit(noms, split=".", fixed=TRUE))))
model = lapply(noms, function(i) gstat::vgm(model="Sph", psill=0, range=1, nugget=0))
names(model)=noms
}else{
if(is(model, "variogramModelList")){

Raimon Tolosana-Delgado
committed
vrnames = names(model)
vrnames = vrnames[-grep(".", vrnames, fixed=TRUE)]
}else if(is(model, "gstat")){

Raimon Tolosana-Delgado
committed
vrnames = names(model$data)
model = model$model
}else if(is(model,"variogramModel") ){

Raimon Tolosana-Delgado
committed
vrnames = levels(model$id)[1]
}else{
ggtr = tryCatch(as.variogramModel(model))

Raimon Tolosana-Delgado
committed
if(inherits(ggtr,"try-error")){

Raimon Tolosana-Delgado
committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
stop("argument 'gg' must either be a variogramModel, a gstat object with a variogramModel, a variogramModelList object, or an object convertible to one")
}else{
return(variogramModelPlot(vg=vg, gg = ggtr, col = col, commonAxis = commonAxis, newfig = newfig, ...))
}
}
}
d = length(vrnames)
# plot empirical vario!
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
if(newfig) par(mfrow=c(d,d), mar=c(1,1,1,1)+0.5, oma=c(0,3,3,0))
for(i in 1:d){
for(j in 1:d){
if(i==j){
noms = vrnames[i]
}else{
noms = paste(vrnames[c(i,j)], vrnames[c(j,i)], sep=".")
}
# take the part of the empirical variogram corresponding to this (pair of) variable(s)
tk = vg$id %in% noms
empvar = vg[tk,]
# find relevant stats
azimuths = unique(empvar$dir.hor)
rgH = range(empvar$dist, na.rm=TRUE)
rgVG = range(empvar$gamma, na.rm=TRUE)
if(commonAxis){
tk.row = grep( vrnames[i],vg$id)
rgVG = range(vg[tk.row,"gamma"], na.rm=TRUE)
}
# take the corresponding model
modvar = model[which(names(model) %in% noms )][[1]]
# predict the several directions
myfun = function(azimuth){
dir = c(sin(azimuth*pi/180), cos((azimuth*pi/180)),0)
gstat::variogramLine(modvar, max(rgH), dir=dir)
}
preds = lapply(azimuths, myfun)
rgVG = range(0,rgVG, sapply(preds, function(X)X[,2]))
ldotlist = dotlist
if(!("xlim" %in% names(ldotlist))){
ldotlist$xlim = range(0,empvar$dist, na.rm=TRUE)
}
if(!("ylim" %in% names(ldotlist))){
ldotlist$ylim = range(ifelse(i==j,0,NA),rgVG, na.rm=TRUE)
}
if(!("pch" %in% names(ldotlist))){
ldotlist$pch = 19
}
if(!("lty" %in% names(ldotlist))){
ldotlist$lty = 2
}
if(!("lwd" %in% names(ldotlist))){
ldotlist$lwd = 2
}
if(!("xlab" %in% names(ldotlist))){
ldotlist$xlab = ""
}
if(!("ylab" %in% names(ldotlist))){
ldotlist$ylab = ""
}
ldotlist$col=col[as.integer(as.factor(empvar$dir.hor))]
ldotlist$x = empvar$dist
ldotlist$y = empvar$gamma
ldotlist$type="p"
do.call(plot, args=ldotlist)
sapply(1:length(azimuths), function(k){
intk = empvar$dir.hor==azimuths[k]
lines(gamma~dist, empvar[intk,], col=col[k], lty=ldotlist$lty)
lines(preds[[k]], col=col[k], lwd=ldotlist$lwd )
})
if(i==1) mtext(side=3, text = vrnames[j], line=2 )
if(j==1) mtext(side=2, text = vrnames[i], line=2 )
}
}
invisible(opar)
}
#### functions to change between LMC and empirical variograms from/to gstat -------
## as gmEVario
# @describeIn as.gmEVario
# @export
as.gmEVario.gstatVariogram = function(vgemp, ...) stop("not yet available")
## as.logratioVariogram (empirical) -------
# transforms a gstat empirical variogram into a logratioVariogram object (evtl. with anisotropy)
# @describeIn as.logratioVariogram
as.logratioVariogram.gstatVariogram = function(vgemp, # gstatVariogram object, emprical logratio variogram
V=NULL, # matrix or name of the logratio transformation used
tol=1e-12, # tolerance for generalized inverse (eventually for clr case)
orignames=NULL, # names of the original component
symmetrize=FALSE, # do you want a whole circle of directions?
...
){
# prepare dimensions, names and constants
DD = length(levels(vgemp$id))
D = (1+sqrt(1+8*DD))/2
if(is.null(orignames)) orignames = paste("v", 1:D, sep="")
if(length(orignames)!=D) stop("names provided not consistent with number of logratio variables. Did you forget the rest?")
o = gsi.produceV(V=V, D=D, orignames=orignames, giveInv=TRUE)
prefix = o$prefix
W = o$W
# separate each direction, if anisotropic vario (ATTENTION: 3D not yet supported)
vg4dir = split(vgemp, vgemp$dir.hor)
# function to build one logratioVariogram
buildOneLogratioVariogram = function(vg){
aux = split(vg, vg$id)
N = nrow(aux[[1]])
lrnames = unique(names(aux))
lrnames = sort(lrnames[-grep(".", lrnames, fixed=TRUE)])
h = array(aux[[1]][,2], dim=c(N, D, D), dimnames=list(NULL, orignames, orignames))
n = array(aux[[1]][,1], dim=c(N, D, D), dimnames=list(NULL, orignames, orignames))
v = array(0, dim=c(D-1, N, D-1), dimnames=list(lrnames, NULL, lrnames))
vvns = strsplit(names(aux), ".", fixed=TRUE)
for(i in 1:length(vvns)){
vns = vvns[[i]]
if(length(vns)==1){ # diagonal
v[vns, ,vns] = aux[[i]]$gamma
}else{#off-diagonal
v[vns[1], ,vns[2]] = aux[[i]]$gamma
v[vns[2], ,vns[1]] = aux[[i]]$gamma
}
}
d = D-1
dim(v) = c(N*d,d)
v = v %*% W
dim(v) = c(d, N*D)
v = t(W) %*% v
dim(v) = c(D,N,D)
# v = aperm(v, c(2,1,3))
v = gmApply(v,2,clrvar2variation)
dim(v) = c(D,D, N)
dimnames(v) = list(orignames, orignames, NULL)
v = aperm(v, c(3,1,2))
erg = structure(list(vg=v, h=h, n=n), class="logratioVariogram")
}
# create all variograms on all directions
res = sapply(vg4dir, buildOneLogratioVariogram)
# if a whole circle of directions is desired...
if(symmetrize){
cn = colnames(res)
res = cbind(res, res)
colnames(res) = c(cn, 180+as.double(cn))
}
# prepare and return the "logratioVariogramAnisotropy" object
hh = res["h",1][[1]][,1,1]
mndfh = mean(diff(hh))
dists = (hh[-1]+hh[-length(hh)])/2
attr(res, "dists") = c(0, dists, max(dists)+mndfh)
class(res)=c("logratioVariogramAnisotropy", "logratioVariogram")
return(res)
}
## as.gstatVariogram (empirical) -------
#' Represent an empirical variogram in "gstatVariogram" format
#'
#' Represent an empirical variogram in "gstatVariogram" format, from package "gstat"; see [gstat::variogram()]
#' for details.
#'
#' @param vgemp empirical variogram of any kind
#' @param ... further parameters (for generic functionality)
#'
#' @return The function returns an object of class "gstatVariogram" containing the empirical variogram provided.
#' See `gstat::variogram()` for details.
#' @export
#'
#' @examples
#' data("jura", package = "gstat")
#' X = jura.pred[,1:2]
#' Zc = compositions::acomp(jura.pred[,7:13])
#' lrvg = gmGeostats::logratioVariogram(data=Zc, loc=X)
#' as.gstatVariogram(lrvg, V="alr")
as.gstatVariogram <- function(vgemp, ...) UseMethod("as.gstatVariogram", vgemp)
#' @describeIn as.gstatVariogram Represent an empirical variogram in "gstatVariogram" format
#' @method as.gstatVariogram default
as.gstatVariogram.default <- function(vgemp, ...) vgemp
#' @describeIn as.gstatVariogram Represent an empirical variogram in "gstatVariogram" format
#' @method as.gstatVariogram gmEVario
as.gstatVariogram.gmEVario <- function(vgemp,...) stop("not yet available")
#' @describeIn as.gstatVariogram Represent an empirical variogram in "gstatVariogram" format
#' @method as.gstatVariogram logratioVariogram
#' @export
#' @param V eventually, indicator of which logratio should be used (one of: a matrix of logcontrasts, or of the strings "ilr", "alr" or "clr")
#' @param dir.hor eventually, which horizontal direction is captured by the variogram provided (seldom to be touched!)
#' @param dir.ver eventually, which vertical direction is captured by the variogram provided (seldom to be touched!)
#' @param prefix prefix name to use for the variables created (seldom needed)
as.gstatVariogram.logratioVariogram =
function(vgemp, # gstatVariogram object, emprical logratio variogram
V=NULL, # matrix or name of the logratio transformation used
dir.hor=0,
dir.ver=0,
prefix=NULL,
...){
class(vgemp) = NULL
orignames = dimnames(vgemp$vg)[[2]]
D = dim(vgemp$vg)[2]
o = gsi.produceV(V=V, D=D, orignames = orignames, giveInv = F, prefix=prefix )
V = o$V
prefix = o$prefix
newnames = paste(prefix, 1:(D-1), sep="")
Vu = V %*% diag(1/sqrt(colSums(V^2)))
hh = gmApply(vgemp$h, 1, clrvar2ilr, V=Vu^2)
nn = gmApply(vgemp$n, 1, clrvar2ilr, V=Vu^2)
vv = -0.5*apply(vgemp$vg, 1, clrvar2ilr, V=V)
ids = outer(newnames, newnames, paste, sep=".")
diag(ids) = newnames
ordre = NULL
for(i in nrow(ids):1){
ordre = c(ordre, ids[1:i,i])
}
rownames(nn) = ids
rownames(hh) = ids
rownames(vv) = ids
# data.frame: np, dist, gamma, dir.hor, dir.ver=0, id= factor
erg = data.frame(np=c(t(nn[ordre,])), dist=c(t(hh[ordre,])),
gamma=c(t(vv[ordre,])),
dir.hor=rep(dir.hor, each=ncol(nn)),
dir.ver=rep(dir.ver, each=ncol(nn)),
id=factor(rep(1:length(ordre), each=ncol(nn)), labels=ordre)
)
class(erg) = c("gstatVariogram", "data.frame")
return(erg)
}
#' @describeIn as.gstatVariogram Represent an empirical variogram in "gstatVariogram" format
#' @method as.gstatVariogram logratioVariogramAnisotropy
#' @export
as.gstatVariogram.logratioVariogramAnisotropy =
function(vgemp, # gstatVariogram object, emprical logratio variogram
V=NULL, # matrix or name of the logratio transformation used
...){
class(vgemp) = NULL
alphas = gsi.azimuth2angle(colnames(vgemp))
erg = as.gstatVariogram.logratioVariogram(vgemp[,1], V=V, dir.hor=alphas[1],...)
for(i in 2:length(alphas)){
erg = rbind(erg, as.gstatVariogram.logratioVariogram(vgemp[,i], V=V, dir.hor=alphas[i],...))
}
class(erg) = c("gstatVariogram", "data.frame")
return(erg)
}
## as.variogramModel (LMC) -------
#' Convert an LMC variogram model to gstat format
#'
#' Convert a linear model of coregionalisation to the format of package gstat. See [gstat::vgm()] for details.
#'
#' @param m variogram model
#' @param ... further arguments for generic functionality
#'
#' @return The LMC model specified in the format of package gstat, i.e. as the result
#' of using [gstat::vgm()]
#' @export
#' @importFrom gstat gstat
#'
#' @examples
#' data("jura", package = "gstat")
#' X = jura.pred[,1:2]
#' Zc = compositions::acomp(jura.pred[,7:13])
#' lrmd = compositions::CompLinModCoReg(formula=~nugget()+sph(1.5), comp=Zc)
#' as.variogramModel(lrmd, V="alr")
as.variogramModel <- function(m, ...) UseMethod("as.variogramModel", m)
#' @describeIn as.variogramModel Convert an LMC variogram model to gstat format
#' @method as.variogramModel default
#' @export
as.variogramModel.default <- function(m, ...) m
#' @describeIn as.variogramModel Convert an LMC variogram model to gstat format
#' @method as.variogramModel gmCgram
#' @export
as.variogramModel.gmCgram = function(m, ...) stop("not yet available")
#' @describeIn as.variogramModel Convert an LMC variogram model to gstat format
#' @method as.variogramModel LMCAnisCompo
#' @export
#' @param V eventually, specification of the logratio representation to use
#' for compositional data (one of: a matrix of log-contrasts to use, or else one of
#' the strings "alr", "clr" or "ilr")
#' @param prefix optional, name prefix for the generated variables if a transformation is used
#' @param ensurePSD logical, should positive-definiteness be enforced? defaults to TRUE, which may
#' produce several scary looking but mostly danger-free warnings
as.variogramModel.LMCAnisCompo <- function(m, V=NULL, prefix=NULL, ensurePSD=TRUE, ...){
D = ncol(m[,1]$sill)
d=D-1
o = gsi.produceV(V=V, D=D, orignames = dimnames(m["sill",1][[1]])[[2]], giveInv = FALSE, prefix=prefix)
V = o$V
prefix = o$prefix
# which combinations of variables do we have to consider?
noms = paste(prefix, 1:d, sep="")
combs = cbind(rep(1:d, times=d:1), matrix(1:d, ncol=d, nrow=d)[lower.tri(diag(d), diag=TRUE)] )
# equivalence table of correlogram model names
eqtabmodels = factor(c(nugget="Nug", exp="Exp", sph="Sph", gau="Gau"), levels=levels(vgm()[,1]))
models = eqtabmodels[sapply(1:ncol(m), function(j) m[,j]$model)]
# express all sill matrices in the desired logratio
for(j in 1:ncol(m)){
aux = -0.5 * t(V) %*% m[,j]$sill %*% V
colnames(aux) <- rownames(aux) <- noms
if(ensurePSD){
e = eigen(aux)
tol = e$values[1]*1e-12
e$values[e$values<tol]=tol
aux = e$vectors %*% diag(e$values) %*% t(e$vectors)
warning("as.variogramModel.LMCAnisCompo: negative eigenvalues corrected")
}
m[,j]$sill = aux
}
# recode A in azimuth, range and range ratio
# TODO: correct and extend to 3D (check consistency with `anis2D.par2A()` and `anish2Dist()`)

Raimon Tolosana-Delgado
committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
anis = matrix(0, nrow=ncol(m), ncol=3)
colnames(anis) = c("range", "ang1", "anis1")
for(j in 1:ncol(m)){
anis[j, "anis1"] <- sqrt(sum((m[,j]$A[,2])^2))
anis[j, "range"] <- m[,j]$range/anis[j, "anis1"]
anis[j, "ang1"] <- atan2(-m[,j]$A[2,1], m[,j]$A[1,1]) * 180/pi
}
anis = data.frame(anis, ang2=0, anis2=1, ang3=0, kappa=0.5*(models!="Nug"))
# if(all(anis$anis1==1)) anis=NULL
# function to build one case
myfun = function(ij){
i = combs[ij,1]
j = combs[ij,2]
sills = sapply(1:ncol(m), function(k) m[,k]$sill[i,j] )
objecte = data.frame(model=models, psill=sills)
if(!is.null(anis)) objecte = cbind(objecte, anis)
# class(objecte) = c("variogramModel","data.frame" )
nugrow = which(objecte$model=="Nug")
nugget = ifelse(length(nugrow)>0, objecte[nugrow,"psill"],0)
first = (1:nrow(objecte))[-nugrow][1]
md = vgm(model=objecte[first,"model"], psill=objecte[first,"psill"], range=objecte[first,"range"],
nugget=nugget, anis=unlist(objecte[first,c("ang1","ang2","ang3", "anis1", "anis2")]),
kappa = objecte[first, "kappa"])
if(length((1:nrow(objecte))[-nugrow])>1)
for(kk in (1:nrow(objecte))[-nugrow][-1])
md = vgm(add.to=md, model=objecte[kk,"model"], psill=objecte[kk,"psill"], range=objecte[kk,"range"],
anis=unlist(objecte[kk,c("ang1","ang2","ang3", "anis1", "anis2")]),
kappa = objecte[kk, "kappa"])
return(md)
}
res = lapply(1:nrow(combs), myfun)
namelist = sapply(1:nrow(combs), function(ij) ifelse(combs[ij,1]==combs[ij,2], noms[combs[ij,1]], paste( noms[combs[ij,1]], noms[combs[ij,2]], sep=".") ) )
names(res) = namelist
#rownames(res) = NULL
class(res) = c("variogramModelList","list")
return(res)
}
#' @describeIn as.variogramModel Convert an LMC variogram model to gstat format
#' @method as.variogramModel CompLinModCoReg
#' @export
#' @param V eventually, specification of the logratio representation to use
#' for compositional data (one of: a matrix of log-contrasts to use, or else one of
#' the strings "alr", "clr" or "ilr")
#' @param prefix optional, name prefix for the generated variables if a transformation is used
#' @param ensurePSD logical, should positive-definiteness be enforced? defaults to TRUE, which may
#' produce several scary looking but mostly danger-free warnings
#' @importFrom compositions vgram.nugget vgram.cardsin vgram.exp vgram.gauss vgram.lin vgram.pow vgram.sph
as.variogramModel.CompLinModCoReg <- function(m, V="alr", prefix=NULL, ensurePSD=TRUE, ...){
strucs = gsi.extractCompLMCstructures(m)
D = ncol(strucs$sills[[1]])
o = gsi.produceV(V=V, D=D, giveInv = FALSE, prefix=prefix)
as.variogramModel(as.LMCAnisCompo(m, varnames=rownames(o$V)), V=o$V, prefix=o$prefix, ensurePSD=ensurePSD, ...)
}
## as.LMCAnisCompo (LMC) -------
#' @describeIn as.LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo
#' @method as.LMCAnisCompo gstat
#' @export
as.LMCAnisCompo.gstat <- function(m,...) as.LMCAnisCompo(m$model, ...)
# @describeIn as.LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo
gstat2LMCAnisCompo <- as.LMCAnisCompo.gstat
#' @describeIn as.LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo
#' @method as.LMCAnisCompo variogramModelList
#' @export
as.LMCAnisCompo.variogramModelList <-
function(m, V=NULL, orignames=NULL, ...){
# prepare constants
DD = length(m)
D = (1+sqrt(1+8*DD))/2
if(is.null(orignames)) orignames = paste("v", 1:D, sep="")
if(length(orignames)!=D) stop("names provided not consistent with number of logratio variables. Did you forget the rest?")
o = gsi.produceV(V=V, D=D, orignames = orignames, giveInv = TRUE)
W = o$W
colnames(W) = orignames
# extract the dimensions and lr-names
lrnames = unique(names(m))
lrnames = sort(lrnames[-grep(".", lrnames, fixed=TRUE)]) # consider only names without "."
# extract the number of structures
K = nrow(m[[1]])
if(length(lrnames)!=(D-1))stop("dimensions of data implied from m and V do not fit!")
# equivalence table of correlogram model names
eqtabmodels = c(Nug="nugget", Exp="exp", Sph="sph", Gau="gau")
# function that extracts one particular sill matrix from the object
darstellung = function(m, i){
sill = matrix(0, ncol=D-1, nrow=D-1)
rownames(sill) <- colnames(sill) <- lrnames
for(jk in 1:DD){
vvns = strsplit(names(m), ".", fixed=TRUE)[[jk]]
if(length(vvns)==1) vvns = rep(vvns, 2)
sill[vvns[1], vvns[2]] <- sill[vvns[2], vvns[1]] <- m[[jk]]$psill[i]
}
return(sill)
}
setvariostructure = function(i){
model = eqtabmodels[ m[[1]]$model[i] ]
sill = clrvar2variation(t(W) %*% darstellung(m, i) %*% W)
range = m[[1]]$range[i] * m[[1]]$anis1[i]
# A = anis2D_par2A(ratio=m[[1]]$anis1[i], angle=m[[1]]$ang1[i], inv=FALSE)
A = anis_GSLIBpar2A(ratios=c(m[[1]]$anis1[i],m[[1]]$anis2[i]),
angles=c(m[[1]]$ang1[i],m[[1]]$ang2[i],m[[1]]$ang3[i]) )

Raimon Tolosana-Delgado
committed
rs = list(model=model, range=range, A=A, sill=sill)
class(rs) = "variostructure"
return(rs)
}
res = sapply(1:K, setvariostructure)
class(res) = "LMCAnisCompo"
return(res)
}
#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format
#' @method as.gmCgram variogramModelList
as.gmCgram.variogramModelList = function(m, ...){
as.gmCgram(as.LMCAnisCompo(m, ...), ...)
}

Raimon Tolosana-Delgado
committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format
#' @method as.gmCgram variogramModel
as.gmCgram.variogramModel = function(m, ...){
# extract nugget
isNugget = m$model=="Nug"
if(any(isNugget)){
nuggetValue = m[isNugget, "psill"]
m = m[!isNugget,, drop=FALSE]
}
# extract model names
modelName = gsi.validModels[paste("vg", m$model,sep=".")]
# if any model name is not identified
if(any(is.na(modelName))){
stop("as.gmCgram.variogramModel: found an unidentified variogram model; check content of internal variable gsi.valiModels to see which models are permissible")
}
# otherwise, extract parametres
tt = function(x) t(t(x))
out = setCgram(type = modelName[1], nugget = tt(nuggetValue), sill = tt(m[1, "psill"]), anisRanges =
as.AnisotropyScaling(unlist(m[1, -(1:4)])), extraPar = m[1, "kappa"])
if(nrow(m)>1){
for(im in 1:nrow(m)){
out = out + setCgram(type = modelName[im], sill = tt(m[im, "psill"]), anisRanges =
as.AnisotropyScaling(unlist(m[im, -(1:4)])), extraPar = m[im, "kappa"])
}
}
return(out)
}