Skip to content
Snippets Groups Projects
gmGeostats.c 24 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    /*
     * SPDX-FileCopyrightText: 2020 Helmholtz-Zentrum Dresden-Rossendorf
     *  <support@boogaart.de>
     *
     * SPDX-License-Identifier: GPL-2.0-or-later
     */
    // attention: comment this if not compiling
    #include <stdio.h>
    #include <Rinternals.h>
    #ifdef _OPENMP
    #include <omp.h>
    #endif
    
    #define inR   // attention: this must be uncommented if not compiling
    
    #ifdef inR 
    #include <R.h>
    #include <Rmath.h>
    #include <R_ext/BLAS.h>
    #include <R_ext/Lapack.h> 
    #endif
    
    #define maxIntervals 1000
    short int binBuf[maxIntervals];
    double doubleBuf[maxIntervals];
    /* int intBuf[maxIntervals];*/
    
    /* massive use of functions to verify: min, max, abs, sqrt, cos, sin */
    /* particularly needed: to build the meta-function that calls fbandXXXX 
     * functions, from line 328 */
    
    typedef void (*vgramDensityFunctionPtr)(int d,double *,double *); 
    typedef double (*vgramFunctionPtr)(double,const double *); 
    typedef void (*bandSimFunctionPtr)(int m,const double *,double *,double,const double *); 
    
    /* invBitExp2
     inverts the sequence of the bits. 
     this is used for the generation of almost equally space directions in 2D
     
     Lantuejoul (2002), page 194
     */
    double invBitExp2(int i) {
      int bit = 1;
      int inv = 0;
      while(i) {
        inv <<=1;
        inv |= (i&1);
        i>>=1;
        bit<<=1;
      }
      return ((double)inv)/bit;
    }
    
    
    /* invBitExp2
     inverts the sequence of the digits in b-adict representation. 
     this is used for the generation of almost equally space directions in 3D
     
     Lantuejoul (2002), page 194
     */
    double invBitExp(int i,int b) {
      int bit = 1;
      int inv = 0;
      while(i) {
        inv *=b;
        inv += (i%b);
        i/=b;
        bit*=b;
      }
      return ((double)inv)/bit;
    }
    
    /*
     Gaussian covariance function
     */
    
    double cGauss(double h,const double *extra) {
      return exp(-(h*h));
    }
    
    /*
     Spherical covariance function
     */
    double cSph(double h,const double *extra) {
      return( h<1 ? 1-1.5*h+0.5*(h*h*h): 0 );
    }
    
    /*
     Exponential covariance function
     */
    double cExp(double h,const double *extra) {
      return exp(-h);
      
    }
    
    /*
     Switcher for covariance functions 
     */
    vgramFunctionPtr cgramFunctions[]={
      cGauss,cSph,cExp
    };
    
    
    static R_NativePrimitiveArgType CcalcCgram_t[] = {
      /* dimX  LDX   X       dimY    LDY    Y       dimC   C     Nugget  nCgr  typeCgr  A       Sill    moreC   ijEq*/
      INTSXP,INTSXP,REALSXP,INTSXP,INTSXP,REALSXP,INTSXP,REALSXP,REALSXP,INTSXP,REALSXP,REALSXP,REALSXP,REALSXP,INTSXP
    };
    
    void CcalcCgram(
        const int *dimX, 
        const int *LDX,
        const double *X,
        const int *dimY,
        const int *LDY,
        const double *Y,
        const int *dimC,
        double *C,
        const double *Nugget, /* d x d*/
    const int *nCgrams,   /* 1 */
    const int *typeCgram, /* length=nCgrams */
    const double *A,  /* nCgrams x m x m sqrt inverse Matrices */
    const double *Sill,   /* nCgrams x d x d*/
    const double *moreCgramData, /* n x ?*/
    const int *ijEqual
    ) {
      int d=dimC[0];
      int nX=dimC[1];
      int nY=dimC[3];
      int m =dimX[1];
      int ldx = *LDX;
      int ldy = *LDY;
      if( dimC[2]!=d )
        error("CcalcVgram: Expected covariance dimensions not compatible");
      if( dimX[0]!=nX )
        error("CcalcVgram: Output does not fit input size for X");
      if( dimY[0]!=nY )
        error("CcalcVgram: Output does not fit input size for Y");
      if( dimY[1]!=m )
        error("CcalcVgram: Column dimensions of X and Y do not fit");
      if( m<1 || m>3)
        error("Can not handel spatial dimensions outside 1-3");
      int outBufSize=d*d*nX*nY;
      int i,j,k,ev,lx,ly,s;
      double delta[3];
      double v[3];
      double h2,h,val;
      for(i=0;i<outBufSize;i++)
        C[i]=0.0;
      if( *ijEqual ) {
        if( nX!=nY )
          error("CcalcVgram: ijEqual and rows of X and Y don't fit");
        for(lx=0;lx<nX;lx++) {
          for(i=0;i<d;i++)
            for(j=0;j<d;j++) 
              C[i+d*(lx+nX*(j+d*lx))]=Nugget[i+d*j];
        }
      }
      for(s=0;s<*nCgrams;s++) { // structure s
        for(lx=0;lx<nX;lx++) // sample index on dataset X
          for(ly=0;ly<nY;ly++) { // sample index on dataset Y
            for(j=0;j<m;j++) // geographic coordinate index
              delta[j]=Y[ly+ldy*j]-X[lx+ldx*j]; // compute spatial lags between the selected locations
            h2=0;
            for(j=0;j<m;j++) { 
              v[j]=0;
              for(k=0;k<m;k++) {
                v[j]+=A[s+*nCgrams * (j+m*k)]*delta[k];
              }
              h2+=v[j]*v[j];
            }
            h=sqrt(h2);
            val=(*(cgramFunctions[typeCgram[s]]))(h,moreCgramData+s);
            for(i=0;i<d;i++)
              for(j=0;j<d;j++)
                C[i+d*(lx+nX*(j+d*ly))] += val*Sill[s+*nCgrams*(i+d*j)];
          }
      }
    }
    
    
    
    /* BEGIN deprecated function ? */
    /*
     vsdfGauss (vector for spatial density function )
     generates a vector of independent random normals in a vector
     */
    void vsdfGauss(int d,double *extra,double *omega) {
      int i;
      for(i=0;i<d;i++)
        omega[i]=norm_rand();
    }
    /* END deprecated function ? */
    
    
    /*
     fbandGauss
     
     generates a sinus function with random phase and random frequence on
     a band for a gaussian covariance structure.
     
     This is a mixture of turning bands and spectral simulation.
     
     */
    void fbandGauss(int n, /* number of locations */
    const double *projs, /* projected locations */ 
    double *band, /* output */ 
    double range, /* projected range */
    const double *extra /* extra parameter (unused), for consistency with other covariances */
    ){
      /* Extract a freq. from the 1D Gaussian density along the unitdirection 
       * where projs were calculated. Evaluate a wave of random phase at the
       * projs points. Return that wave */	
      int i;
      double phase,amp,omega,d1;   
      omega = norm_rand()  * M_SQRT2 / range; 
      phase = unif_rand() * M_2PI;
      amp  = M_SQRT2; /* Lantuejoul (2002), page 191 */
      for(i=0;i<n;i++) {
        d1 = phase + projs[i]*omega; // projs, *projs==projs[0], projs[i]==*(projs+i) 
        d1 = sin(d1);
        band[i] = amp*d1;
      }
    }
    
    
    // IS THIS RIGHT??
    void fbandSph(int n, /* number of locations */
      const double *projs, /* projected locations */ 
      double *band, /* output */ 
      double range, /* projected range */
      const double *extra /* extra parameter (unused), for consistency with other covariances */
    ){
      
      int i,j,nIntervals;
      double t,x0,x1,effrange;
      /* Lantuejoul (2002), page 197 */ 					
      /* Find the smallest proj; select a uniform point "x0" left from it at 
       * most "range" away. Domain = (x0, max(projs)) */
      x0 = projs[0];  /* does min exist?? */
      x1 = projs[0];
      effrange = range;
      // effrange = range *2.0; // this was an attempt to get reasonable range fitting
      for(i=1;i<n;i++) {
        if( projs[i]>x1 )
          x1=projs[i];
        else if( projs[i]<x0 )
          x0=projs[i];
      }  
      x0 += -unif_rand() * effrange;
      nIntervals = (int) ceil((x1-x0)/effrange);
      if( nIntervals > maxIntervals )
        error("fbandSph: Exceeded maxIntervals");
      for(i=0;i<nIntervals;i++) 
        binBuf[i] = unif_rand()<0.5?1:-1;
      for(i=0;i<n;i++) {
        t=(projs[i]-x0)/effrange;
        j=(unsigned int)floor(t);
        //band[i]=binBuf[j]*(t-j-0.5)*M_SQRT_3;
        band[i]=binBuf[j]*(t-j-0.5)*2.0*M_SQRT_3;
      }
    }
    
    int bsearchDouble(double x,int n,double *s) {
      int j0=0;
      int j1=n-1;
      int j;
      while(j1-j0>1) {
        /* We know s[j0] <= x < s[j1] */
        j = (j0+j1)/2;
        if( x < s[j] )
          j1=j;
        else
          j0=j;
      }
      return(j0);
    }
    
    
    void fbandExp(int n, /* number of locations */
        const double *projs, /* projected locations */ 
        double *band, /* output */ 
        double range, /* projected range */
        const double *extra /* extra parameter (unused), for consistency with other covariances */
    ){
      int i,j,ns;
      double d1,x0,x1,sign,effrange;
      /* Lantuejoul (2002), page 196 */ 
      /* Find the smallest proj; select a random exponential point "x0" left 
       * from it with lambda "2range" away. Domain = (x0, max(projs)) */
      sign = unif_rand()>0.5? 1 : -1; /* start + or - randomly */
      effrange = range;  /*  ATTENTION: 3*range, but range is inverted ??? */
      x0 = projs[0];  /* does min exist?? */
      x1 = projs[0];
      for(i=1;i<n;i++) {
        if( projs[i]>x1 )
          x1=projs[i];
        else if( projs[i]<x0 )
          x0=projs[i];
      }  
      x0 -= 2*effrange*exp_rand();
      
      /* Partition the domain with a Poisson point process of lambda=2range. */
      ns = 0;
      doubleBuf[0] = x0;
      while( doubleBuf[ns]<x1 ){
        if( ns>=maxIntervals )
          error("fbandExp: too small range; merge with nugget?");
        doubleBuf[ns+1] = doubleBuf[ns] + 2*effrange*exp_rand();
        ns ++;
      }
      /* Assign values*/
      for(i=0;i<n;i++){
        j=bsearchDouble(projs[i],ns,doubleBuf);
        d1 = (doubleBuf[j+1] + doubleBuf[j])/2; /* midpoint */
      d1 = projs[i] - d1;
      band[i] = d1>0 ? sign : -sign; /* -1 if projs[i]<midpoint; +1 otherwise */
      }  
    }
    
    
    bandSimFunctionPtr bandSim[]={
      fbandGauss,fbandSph,fbandExp
    };
    
    void getUnitvec(
        int dimX, /* m = 2 or 3 */
      int ip, /* number of the band being simulated */
      double *unitvec /* out: m x 1*/ 
    ) {
      /* weak discrepancy sequence of pseudorandom directions in 2D or 3D:
       * Lantuejoul (2002), page 194, after Freulon (1992) */			  
      int i;
      double d1,d2,d3;
      if(dimX>3)
        error("no expression for unit vectors in dimension larger than 3");
      if( dimX==3) {
        d1=invBitExp2(ip)*M_2_PI;
        d2=invBitExp(ip,3);
        d3 = sqrt(1-d2*d2); 
        unitvec[2] = d2;
        unitvec[0] = cos(d1)*d3; 
        unitvec[1] = sin(d1)*d3;
      } else if( dimX==2 ) {
        d1=invBitExp2(ip);
        unitvec[0] = cos(d1*M_PI); 
        unitvec[1] = sin(d1*M_PI);   
      } else if( dimX== 1) {
        unitvec[0]=1;
      }
    }
    
    
    
    static R_NativePrimitiveArgType CMVTurningBands_t[] = {  /* INTSXP,REALSXP */
     /* dimX,    X,  dimZ    Z     nBands sqrtNug nCgram  typeCgr   A    sqrtSill moreCgr */
     INTSXP,REALSXP,INTSXP,REALSXP,INTSXP,REALSXP,INTSXP,INTSXP,REALSXP,REALSXP,REALSXP   
     };
      
    
    void CMVTurningBands(
        const int *dimX, /* n,m */
      const double *X,
      const int *dimZ, /*d,n,nsim */
      double *Z, /* Output Simulation transposed*/
      const int *nBands,
      const double *sqrtNugget, /* d x d*/
      const int *nCgrams,   /* 1 */
      const int *typeCgram, /* length=nCgrams */
      const double *A,  /* nCgrams x m x m sqrt inverse Matrices */
      const double *sqrtSill,   /* nCgrams x d x d*/
      const double *moreCgramData /* n x ?*/ 
    ) {
      const int maxCgramType=2;
      const int nsim=dimZ[2];
      int i,j,k,s,ss,ev;
      double d1,d2,d3;
      const double sqrtNBands=sqrt((double) *nBands);
      double phase,amp;
      const int n=dimX[0];
      const int m=dimX[1];
      const int d=dimZ[0];
      double projs[n];
      double band[n];
      double v[3];
      double omega[3];
      int sim;
      Rprintf("Starting calculations\n");
      if( m<1 || m>3 )
        error("CMVTurningBands: illegal X column dimension");
      if( dimZ[1]!=n )
        error("CMVTurningBands: Z and X do not fit in dimension");
    #ifdef inR 
      GetRNGstate();
    #endif
      /*setting Z to 0*/
      for(sim=0;sim<nsim;sim++) { 
        for(i=0;i<n;i++)
          for(j=0;j<d;j++)
            Z[d*i+j]=0.0;
        for(s=0;s<*nBands;s++){/* band */
      getUnitvec(3, s+1, &(omega[0])); /* obtain a direction; always in 3D, in order for the spherical variogram to be correct */
      //getUnitvec(m, s+1, omega); /* obtain a direction */
      for(ss=0;ss< *nCgrams;ss++) { /* variogram structure */
      if( typeCgram[ss]<0 || typeCgram[ss] > maxCgramType )
        error("CMVTurningBands: Unknown variogram type");
      /* project all data onto the direction */
      for(i=0;i<n;i++){ /* location */
      for(j=0;j<m;j++) {
        v[j]=0;
        for(k=0;k<m;k++)
          v[j]+=A[ss+ *nCgrams *(j+m*k)]*X[i+n*k];
      }
      projs[i]=0;
        for(j=0;j<m;j++){ /* spatial dimension */
      projs[i]+=omega[j]*v[j];
        }
      }
      /* for each eigenvalue, ... */
      for(ev=0;ev<d;ev++) { /* eigenvector */
      /* ... obtain a curve at all proj points following the covariance model */  
      (*bandSim[typeCgram[ss]])(n,projs,band,1.0,moreCgramData+ss);  
        /* this function takes the projs and returns on band the  the curve */
        /* ... multiply the eigenvector by the curve, and accumulate */
    
    #pragma omp parallel for		             \
        if(!omp_in_parallel()&&0)		        \
          num_threads(omp_get_num_procs())	\
          default(shared) private(i,j,d2) 
        for(i=0;i<n;i++){ /* location */
        for(j=0;j<d;j++){ /* variable */
        d2 = sqrtSill[ss + *nCgrams *(j+d*ev)]*band[i]; 
          Z[d*i+j]+=d2;  
        }	  
        }
    
    #else
        for(i=0;i<n;i++){ /* location */
        for(j=0;j<d;j++){ /* variable */
        d2 = sqrtSill[ss + *nCgrams *(j+d*ev)]*band[i]; 
          Z[d*i+j]+=d2;  
        }	  
        }
    #endif
    
      }
      }
        } 
        /* Rescale*/
        for(i=0;i<n;i++)
          for(j=0;j<d;j++)
            Z[d*i+j] /= sqrtNBands; // Lantuejoul 2002 p.193
        /* Nugget */
        for(i=0;i<n;i++)
          for(j=0;j<d;j++) {
            d1 = norm_rand();
            for(k=0;k<d;k++)
              Z[d*i+k] += d1*sqrtNugget[k+d*j]; /*check*/
          }
          Z+=d*n;
      }
    #ifdef inR 
      PutRNGstate();
    #endif
    }
    
    
    
    
    static R_NativePrimitiveArgType CCondSim_t[] = {  /* INTSXP,REALSXP */
     /* dimZin  Zin   Cinv   dimX,    X,     dimZ    Z     nBands sqrtNugget nugget nCgrams typeCgr   A  sqrtSill sill   moreCgr   cbuf   dbuf */
       INTSXP,REALSXP,REALSXP,INTSXP,REALSXP,INTSXP,REALSXP,INTSXP,REALSXP,REALSXP,INTSXP,INTSXP,REALSXP,REALSXP,REALSXP,REALSXP,REALSXP,REALSXP
    };
     
    
    void CCondSim(
        const int *dimZin, /* IN: d, nin */
        const double *Zin, /*IN: nin x d Randomfield data to condition to */
        const double *Cinv,/*IN: (nin * d) x (nin x d) inverse of Covariance*/
        const int *dimX, /* IN: n, m */
        const double *X, /* IN: All Lokations, first nin conditioning */ 
        const int *dimZ, /* IN: d, n,nsim */
        double *Z, /* OUT: t() Output Simulation */
        const int *nBands, /* IN: Desired number of Bands*/
        const double *sqrtNugget, /* IN: d x d */
        const double *nugget, /* IN: dxd */
        const int *nCgrams,   /* IN: number of variograms */
        const int *typeCgram, /* IN: type of each variogram,length=nCgrams */
        /* 0=Gauss, 1=Spherical, 2=Exponential */
        const double *A,  /* IN: Anisotropy matrices, nCgrams x m x m inverse Matrices */
        const double *sqrtSill,   /* IN: nCgrams x d x d*/
        const double *sill,       /* IN: nCgrams x d x d*/
        const double *moreCgramData, /* nGrams x 1 Extraparamter*/ 
        double *cbuf,  /* BUF: Buffer of length d*d*nin */
        double *dbuf  /* BUF: Buffer of length d*nin*nsim */
    ) {
      const int maxCgramType=2;
      const int n=dimX[0];
      const int m=dimX[1];
      const int d=dimZin[0];
      const int nin = dimZin[1];
      const int nsim= dimZ[2];
      const int nd=n*d;
      const char No='N';
      const char Transposed='T';
      const int dmnin=d*nin;
      const int oneI=1;
      const int zeroI = 0;
      const double zero=0.0;
      const double one=1.0;
      const double minus1=-1.0;
      int i,j,k,s,ss,ev,l;
      int sim,shift;
      double d1,d2,d3,cv;
      const int dimXin[2] = {nin,m}; 
      const int dimXout[2] = {1,m};
      const int dimCbuf[4] = {d,nin,d,1};
      // Unconditional Simulation
      Rprintf("starting unconditional simulation (%d)\n",nsim);
      CMVTurningBands(dimX,
                      X,
                      dimZ,
                      Z,
                      nBands,
                      sqrtNugget,
                      nCgrams,
                      typeCgram,
                      A,
                      sqrtSill,
                      moreCgramData
      );	  
      Rprintf("unconditional simulation done (%d)\n",nsim);
      Rprintf("starting conditioning by dual kriging\n");
      /* Kriging from simulated using Cinv */
      // Create differenes of obs and sim
    
    #pragma omp parallel			               \
      if(!omp_in_parallel())			           \
        num_threads(omp_get_num_procs())		\
        default(shared) private(i,j,sim,shift,k)
        {
    #pragma omp parallel for	      
          for(int sim=0;sim<nsim;sim++) {
            int shift=nd*sim;
            for(int i=0;i<nin;i++)
              for(int j=0;j<d;j++){
                int k=d*i+j;
                Z[k+shift]-=Zin[k];
              }
          }
        }
    
    #else
      for(int sim=0;sim<nsim;sim++) {
        int shift=nd*sim;
        for(int i=0;i<nin;i++)
          for(int j=0;j<d;j++){
            int k=d*i+j;
            Z[k+shift]-=Zin[k];
          }
      }
    #endif
    
      /* Z[hinten] -= \hat{Z[hinten]}(Z[vorn]) = cov(hinten,vorn)%*% Cinv %*% Z[vorn] */
      /* dbuf = Cinv %*% Z[vorn] 
       Cinv in R ^ d*nin x d*nin
       Z[vorn] in R^d*nin
       
       */
      // Dual Kriging preparation
    
    #pragma omp parallel for			           \
      if(!omp_in_parallel()&&0)			        \
        num_threads(omp_get_num_procs())		\
        default(shared) private(sim)
        for(sim=0;sim<nsim;sim++) {
          F77_NAME(dgemv)(&No,
                   &dmnin,
                   &dmnin,
                   &one,
                   Cinv,
                   &dmnin,
                   Z+nd*sim,
                   &oneI,
                   &zero,
                   dbuf+dmnin*sim,
                   &oneI);
        }
    
    #else
        for(sim=0;sim<nsim;sim++) {
          F77_NAME(dgemv)(&No,
                   &dmnin,
                   &dmnin,
                   &one,
                   Cinv,
                   &dmnin,
                   Z+nd*sim,
                   &oneI,
                   &zero,
                   dbuf+dmnin*sim,
                   &oneI);
        }
    #endif
    
        // /* points in*/
        //for(i=0;i<nin;i++)
        //for(j=0;j<m;j++)
        //Xin[m*i+j] = X[m*i+j];
        // /* points out*/
        //for(i=nin;i<n;i++)
        //for(j=0;j<m;j++)
        //Xout[m*(i-nin)+j] = X[m*i+j];
        /* fill cbuf*/
        // ******** Iterate over points
        for(i=nin;i<n;i++) {
          CcalcCgram(
            dimXin,
            &n,
            X,
            dimXout,
            &n,
            X+i,
            dimCbuf,
            cbuf,
            nugget, /* d x d*/
        nCgrams,   /* 1 */
        typeCgram, /* length=nCgrams */
        A,  /* nCgrams x m x m sqrt inverse Matrices */
        sill,   /* nCgrams x d x d*/
        moreCgramData,
        &zeroI
          );
          
          //for(l=0;l<nin;l++) { /* points in*/
          //for(j=0;j<d;j++)  /* koor point in */
          //for(k=0;k<d;k++) /* koor point out */
          //cbuf[j+d*(k+d*l)]=0.0; /* geeignet d*d*nin, nugget no */
          //for(s=0;s<*nCgrams;s++) { /* structure */
          //d1=0;
          //for(j=0;j<m;j++) /* spatial dimension */
          //for(k=0;k<m;k++) /* spatial dimension */
          //d1+=A[s + *nCgrams *(j+m*k)]*omega[j]*omega[k]; /* check */
          //cv=(*cgramFunctions[typeCgram[s]])(sqrt(d1),moreCgramData+s);
          //for(j=0;j<d;j++)  /* koor point in */
          //for(k=0;k<d;k++) /* koor point out */
          //cbuf[j+d*(k+d*l)]+=cv*sill[s+*nCgrams*(j+d*k)];
          //}
          //}
          
          /* Z[,i] +=  t(cbuf(d*nin,d)) %*% dbuf(d*nin) */
    
    #pragma omp parallel for			               \
          if(!omp_in_parallel()&&0)			        \
            num_threads(omp_get_num_procs())		\
            default(shared) private(sim)
            for(sim=0;sim<nsim;sim++) {
              F77_NAME(dgemv)(&Transposed,
                       &dmnin,
                       &d,
                       &minus1,
                       cbuf,
                       &dmnin,
                       dbuf+dmnin*sim,
                       &oneI,
                       &one,
                       Z+i*d+nd*sim,
                       &oneI);
            }
    
    #else
            for(sim=0;sim<nsim;sim++) {
              F77_NAME(dgemv)(&Transposed,
                       &dmnin,
                       &d,
                       &minus1,
                       cbuf,
                       &dmnin,
                       dbuf+dmnin*sim,
                       &oneI,
                       &one,
                       Z+i*d+nd*sim,
                       &oneI);
            }
    #endif
    
        }
    }
    
    
    
    //anaV(v1,m,mx,i*h,dimY,y,sigma0,sigma1);
    extern void anaV(double *v,   // velocity of a datum
                     const int m,         // number of variables
                     const double *x,     // location of the datum
                     const double t,      // time moment
                     const int *dimY,     // dimension of the data nodes
                     const double *y,     // data nodes
                     const double *wY,    // weights of the data nodes
                     const double sigma0, // parameter sigma0
                     const double sigma1  // parameter sigma1
    ) {
      size_t nY=dimY[1];  // number of data nodes
      double sigmat=sigma0+t*(sigma1-sigma0);  // deviation at this moment
      double sigmaD=(sigma1-sigma0); 
      for(int i=0;i<m;i++){ // initialize velocity
        v[i]=0;
      }
      double ws=0; // sum of weights
      for(int j=0;j<nY;j++) { // loop on number of data nodes
        // double d=0; 
        double dz[m];    
        double s2=0;
        for(int i=0;i<m;i++) {
          const double ddz=(x[i]-(1-t)*y[m*j+i])/sigmat;
          dz[i]=ddz;
          s2+=ddz*ddz;
        }
        double w=exp(-s2/2.0)*wY[j]; // weighting
        ws+=w;
        for(int i=0;i<m;i++)
          v[i]+=w*(sigmaD*dz[i]-y[m*j+i]);
      }
      for(int i=0;i<m;i++){
        v[i]/=ws;
      } 
    }
    
    
    
    static R_NativePrimitiveArgType anaForwardC_t[] = {  /* INTSXP,REALSXP */
        /* dimX,    x,     dimY    y     wY    stepsp   sigma0p    sigma1p */
         INTSXP,REALSXP,INTSXP,REALSXP,REALSXP,INTSXP, REALSXP,  REALSXP
    };
    
    
    extern void anaForwardC(const int *dimX,
                            double *x,
                            const int *dimY,
                            const double *y,
                            const double *wY,    // weights of the data nodes
                            const int *stepsp,
                            const double *sigma0p,
                            const double *sigma1p
    ) {
      
      const double sigma0=*sigma0p;
      const double sigma1=*sigma1p;
      const size_t steps=*stepsp;
      const size_t m=dimX[0];
      const size_t nx=dimX[1];
      // const size_t ny=dimY[1];
      const double h=((double)1.0)/steps;
      if( dimY[0]!=m )
        error("anaForwardC: x and y have different number of variables / rows");
    
      for(size_t i=0;i<nx;i++) {
        double v1[m];
        double v2[m];
        double xx[m];
        double *mx=x+m*i;
        for(size_t s=0;s<steps;s++) {
          // v1
          anaV(v1,m,mx,s*h,dimY,y,wY,sigma0,sigma1);
          // xx=x+h*v1
          for(int j=0;j<m;j++)
            xx[j]=mx[j]+h*v1[j];
          // v2
          anaV(v2,m,xx,(s+1)*h,dimY,y,wY,sigma0,sigma1);
          // x+=0.5*h*(v1+v2)
          for(int j=0;j<m;j++)
            mx[j]+=0.5*h*(v1[j]+v2[j]);
        }
      }
    
    #else
      for(size_t i=0;i<nx;i++) {
        double v1[m];
        double v2[m];
        double xx[m];
        double *mx=x+m*i;
        for(size_t s=0;s<steps;s++) {
          // v1
          anaV(v1,m,mx,s*h,dimY,y,wY,sigma0,sigma1);
          // xx=x+h*v1
          for(int j=0;j<m;j++)
            xx[j]=mx[j]+h*v1[j];
          // v2
          anaV(v2,m,xx,(s+1)*h,dimY,y,wY,sigma0,sigma1);
          // x+=0.5*h*(v1+v2)
          for(int j=0;j<m;j++)
            mx[j]+=0.5*h*(v1[j]+v2[j]);
        }
      }
    #endif
    
    static R_NativePrimitiveArgType anaBackwardC_t[] = {  /* INTSXP,REALSXP */
        /* dimX,    x,     dimY    y     wY    stepsp   sigma0p    sigma1p */
        INTSXP,REALSXP,INTSXP,REALSXP,REALSXP,INTSXP, REALSXP,  REALSXP
    };
    
    extern void anaBackwardC(const int *dimX,
                             double *x,
                             const int *dimY,
                             const double *y,
                             const double *wY,    // weights of the data nodes
                             const int *stepsp,
                             const double *sigma0p,
                             const double *sigma1p
    ) {
      
      const double sigma0=*sigma0p;
      const double sigma1=*sigma1p;
      const size_t steps=*stepsp;
      const size_t m=dimX[0];
      const size_t nx=dimX[1];
      // const size_t ny=dimY[1];
      const double h=((double)1.0)/steps;
      if( dimY[0]!=m )
        error("anaBackwardC: x and y have different number of variables / rows");
    
    #pragma omp parallel for 
      for(size_t i=0;i<nx;i++) {
        double v1[m];
        double v2[m];
        double xx[m];
        double *mx=x+m*i;
        for(size_t s=0;s<steps;s++) {
          // v1
          anaV(v1,m,mx,1-s*h,dimY,y,wY,sigma0,sigma1);
          // xx=x-h*v1
          for(int j=0;j<m;j++)
            xx[j]=mx[j]-h*v1[j];
          // v2
          anaV(v2,m,xx,1-(s+1)*h,dimY,y,wY,sigma0,sigma1);
          // x+=0.5*h*(v1+v2)
          for(int j=0;j<m;j++)
            mx[j]-=0.5*h*(v1[j]+v2[j]);
        }
      }
    
    #else
      for(size_t i=0;i<nx;i++) {
        double v1[m];
        double v2[m];
        double xx[m];
        double *mx=x+m*i;
        for(size_t s=0;s<steps;s++) {
          // v1
          anaV(v1,m,mx,1-s*h,dimY,y,wY,sigma0,sigma1);
          // xx=x-h*v1
          for(int j=0;j<m;j++)
            xx[j]=mx[j]-h*v1[j];
          // v2
          anaV(v2,m,xx,1-(s+1)*h,dimY,y,wY,sigma0,sigma1);
          // x+=0.5*h*(v1+v2)
          for(int j=0;j<m;j++)
            mx[j]-=0.5*h*(v1[j]+v2[j]);
        }
      }
    #endif
    
    }
    
    
    
    
    
    static R_CMethodDef cMethods[] = {
      {"CcalcCgram", (DL_FUNC) &CcalcCgram, 15, CcalcCgram_t},
      {"CMVTurningBands", (DL_FUNC) &CMVTurningBands, 11, CMVTurningBands_t},
      {"CCondSim", (DL_FUNC) & CCondSim, 18,  CCondSim_t},
      {"anaForwardC", (DL_FUNC) &anaForwardC, 8, anaForwardC_t},
      {"anaBackwardC", (DL_FUNC) &anaBackwardC, 8, anaBackwardC_t},
      {NULL, NULL, 0}
    };
    
    
    void R_init_compositions(DllInfo *info)
    {
      R_registerRoutines(info, cMethods, NULL, NULL, NULL);
      R_useDynamicSymbols(info, FALSE);
      R_forceSymbols(info, TRUE);
    }