Skip to content
Snippets Groups Projects
Commit 6e9cf699 authored by Raimon Tolosana-Delgado's avatar Raimon Tolosana-Delgado
Browse files

minor changes

parent e7a87bb6
No related branches found
No related tags found
No related merge requests found
Package: gmGeostats
Version: 0.10-6
Version: 0.10-6.9000
Date: 2020-09-07
Title: Geostatistics for Compositional Analysis
Authors@R: c(person(given = "Raimon",
......
......@@ -59,7 +59,10 @@ S3method(getStackElement,default)
S3method(getStackElement,list)
S3method(gmApply,DataFrameStack)
S3method(gmApply,default)
S3method(gsi.gstatCokriging2compo,data.frame)
S3method(gsi.gstatCokriging2compo,default)
S3method(gsi.gstatCokriging2rmult,data.frame)
S3method(gsi.gstatCokriging2rmult,default)
S3method(has.missings,data.frame)
S3method(image,logratioVariogramAnisotropy)
S3method(image,mask)
......
# gmGeostats 0.10.x
* (2020-09-18) conversion of variogram models of class CompLinModCoReg -> LMCAnisCompo -> variogramModel(List)
* (2020-09-18) `gsi.gstatCokriging2compo()` and `gsi.gstatCokriging2rmult()` now work with systems of 3 components resp. 2 variables (systems of 2 components or 1 variable still fail)
# gmGeostats 0.10.6
* (2020-09-17) we are in CRAN!
\ No newline at end of file
This diff is collapsed.
......@@ -207,22 +207,24 @@ gsi.CondTurningBands <- function(Xout, Xin, Zin, vgram,
### tests --
# if(!exists("do.test")) do.test=FALSE
# if(do.test){
# library("gstat")
# library("magrittr")
# data("jura", package = "gstat")
# dt = jura.pred %>% dplyr::select(Cd:Zn)
# X = jura.pred[,1:2]
# spc = SpatialPointsDataFrame(SpatialPoints(X),acomp(dt))
# a2 = make.gmCompositionalGaussianSpatialModel(spc)
# #attach(gsi)
# a3gs = as.gstat(a2)
# a3vg = variogram(a3gs)
# a3gs = fit_lmc(a3vg, a3gs, vgm("Sph", psill=1, nugget=0, range=1))
# a4 = make.gmCompositionalGaussianSpatialModel(spc, V="alr", model=a3gs$model)
# a4gs = as.gstat(a4)
# p1 = predict(a4gs, newdata = jura.grid)
# p2 = predict(a4gs, newdata = SpatialPoints(jura.grid[,1:2]))
# p3 = predict(a4gs, newdata = SpatialPixels(SpatialPoints(jura.grid[,1:2])))
# library("compositions")
# library("sp")
# library("magrittr")
# library("gstat")
# data("jura", package = "gstat")
# dt = jura.pred %>% dplyr::select(Cd:Cr)
# X = jura.pred[,1:2]
# spc = SpatialPointsDataFrame(SpatialPoints(X),acomp(dt))
# a2 = make.gmCompositionalGaussianSpatialModel(spc)
# #attach(gsi)
# a3gs = as.gstat(a2)
# a3vg = variogram(a3gs)
# a3gs = fit_lmc(a3vg, a3gs, vgm("Sph", psill=1, nugget=0, range=1))
# a4 = make.gmCompositionalGaussianSpatialModel(spc, V="alr", model=a3gs$model)
# a4gs = as.gstat(a4)
# p1 = predict(a4gs, newdata = jura.grid)
# p2 = predict(a4gs, newdata = jura.grid[,1:2])
# p3 = predict(a4gs, newdata = SpatialPixels(SpatialPoints(jura.grid[,1:2])))
#
# }
......
......@@ -152,6 +152,7 @@ gsi.gstatCokriging2compo.default <- function(COKresult, ...){
#' @param tol for generalized inversion of the matrix (**rarely touched!**)
#' @param nscore boolean, were the data normal score-transformed? (**deprecated**)
#' @param gg in the case that normal score transformation was applied, provide the gstat object! (**deprecated**)
#' @export
gsi.gstatCokriging2compo.data.frame = function(COKresult, # output of predict.gstat
V=NULL, # string or matrix describing which logratio was applied
orignames=NULL, # names of the original components (OPTIONAL)
......@@ -171,7 +172,7 @@ gsi.gstatCokriging2compo.data.frame = function(COKresult, # output of predict.gs
if(is.null(orignames)) orignames = paste("v", 1:D, sep="")
if(length(orignames)!=D) stop("names provided not consistent with number of logratio variables. Did you forget the rest?")
prefix = "ilr"
prediccions = COKresult[,prednames]
prediccions = COKresult[,prednames, drop=FALSE]
if(is.character(V)){
if(V=="ilr"){
V = ilrBase(prediccions)
......@@ -205,12 +206,12 @@ gsi.gstatCokriging2compo.data.frame = function(COKresult, # output of predict.gs
# add cokriging variance matrices as an attribute as well
noms = sub(".pred", "", prednames)
cvmat = array(0, dim=c(nrow(rg), D-1, D-1), dimnames=list(NULL, noms, noms))
vrs = COKresult[,varnames]
vrs = COKresult[,varnames, drop=FALSE]
colnames(vrs) = sub(".var", "", varnames)
for(ivr in noms){
cvmat[ ,ivr, ivr] = vrs[,ivr]
}
cvs = COKresult[,covnames]
cvs = COKresult[,covnames, drop=FALSE]
colnames(cvs) = sub("cov.", "", covnames)
for(ivr in noms){
for(jvr in noms){
......@@ -234,6 +235,7 @@ gsi.gstatCokriging2rmult <- function(COKresult, ...) UseMethod("gsi.gstatCokrigi
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged multivariate data
#' @method gsi.gstatCokriging2rmult default
#' @export
gsi.gstatCokriging2rmult.default <- function(COKresult, ...){
stopifnot(is(COKresult, "Spatial"), "data" %in% slotNames(COKresult))
coord = sp::coordinates(COKresult)
......@@ -251,6 +253,7 @@ gsi.gstatCokriging2rmult.default <- function(COKresult, ...){
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged multivariate data
#' @method gsi.gstatCokriging2rmult data.frame
#' @export
gsi.gstatCokriging2rmult.data.frame = function(COKresult, # output of predict.gstat
nscore=FALSE, # were the data NS-transformed?
gg=NULL, # in the case that NS was applied, provide the gstat object!
......@@ -264,7 +267,7 @@ gsi.gstatCokriging2rmult.data.frame = function(COKresult, # output of predict.gs
D = length(prednames)
noms = sub(".pred", "", prednames)
prediccions = COKresult[,prednames]
prediccions = COKresult[,prednames, drop=FALSE]
if(nscore){
## space to back-transform the predictions
#if(is.null(gg))stop("To apply a nscore backtransformation, the gstat object must be provided!")
......@@ -283,12 +286,12 @@ gsi.gstatCokriging2rmult.data.frame = function(COKresult, # output of predict.gs
if(!nscore){
# add cokriging variance matrices as an attribute as well
cvmat = array(0, dim=c(nrow(rg), D, D), dimnames=list(NULL, noms, noms))
vrs = COKresult[,varnames]
vrs = COKresult[,varnames, drop=FALSE]
colnames(vrs) = sub(".var", "", varnames)
for(ivr in noms){
cvmat[ ,ivr, ivr] = vrs[,ivr]
}
cvs = COKresult[,covnames]
cvs = COKresult[,covnames, drop=FALSE]
colnames(cvs) = sub("cov.", "", covnames)
for(ivr in noms){
for(jvr in noms){
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment