@@ -59,14 +59,14 @@ From this point on, what you do depends on which model do you have in mind. Here
A structural analysis can be obtained in the following steps
```{r structural}
## empirical variogram
## empirical structural function
vge = variogram(gsm)
## model specification
vm = gstat::vgm(model="Sph", range=25, nugget=1, psill=1)
# you can use gstat specifications!
## variogram fit
## model fitting
gsm.f = fit_lmc(v = vge, g = gsm, model = vm)
## plot
...
...
@@ -76,7 +76,9 @@ variogramModelPlot(vge, model = gsm.f)
This model can then be validated, interpolated and/or simulated. The workflow for each of these tasks is always:
1.- define some method parameters with a tailored function, e.g. `LeaveOneOut()` for validation, `KrigingNeighbourhood()` for cokriging or `SequentialSimulation()` for sequential Gaussian Simulation
2.- if desired, define some new locations where to interpolate or simulate, using `expand.grid()` or `sp::GridTopology()` or similar
3.- call an appropriate function, specifying the model, potential new data, and the parameters created in the preceding steps; e.g. `validate(model, pars)` for validation, or `predict(model, newdata, pars)` for interpolation or validation
More information can be found in [./vignettes/gmGeostats.html](vignette).