Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#' Set or get the ordering of a grid
#'
#' Specify or retrieve the ordering in which a grid is stored in a vector (or matrix).
#'
#' @param x a data container for the elements of the grid; the grid order is stored as an attribute to it
#' @param refpoint a string specifying which point of the grid corresponds
#' to the first element of `x`; see below
#' @param cycle a permutation of the integers `1:G` (see below)
#'
#' @return `setGridOrder(x,...)` returns the object `x` with the grid order description attached
#' as an attribute "gridOrder"; `getGridOrder(x)` retrieves this attribute and returns it.
#' @details A "gridOrder" attribute is a list consisting of two named elements:
#' \describe{
#' \item{refpoint}{one of "topleft", "bottomleft", "topright" or "bottomright" in 2D, or
#' also of "topleftsurf", "bottomleftsurf", "toprightsurf", "bottomrightsurf", "topleftdeep","bottomleftdeep",
#' "toprightdeep" or "bottomrightdeep" in 3D ("deep" is accessory, i.e. "topleft"== "topleftdeep"),
#' indicating the location on the grid of the first point of the object `x`}
#' \item{cycle}{a permutation of `1:G` indicating in which order run the dymensions, from faster to slower}
#' }
#'
#' Thus, a conventional ordering of a (nX*nY)-element vector into a matrix to plot with [graphics::image()]
#' corresponds to an `refpoint="bottomleft"` and `cycle=1:2`, i.e. start with the lower left corner
#' and run first by rows (eastwards), then by columns (northwards). This is constructed by
#' `gridOrder_array(G)`, and can be directly set to an object `x` by `setGridOrder_array(x,G)`;
#' `gridOrder_GSLib` is an alias for `gridOrder_array`.
#'
#' The grids from package "sp" (and many other in R), on the contrary follow the convention
#' `refpoint="topleft"` and `cycle=1:2`, i.e. start with the upper left corner
#' and run first by rows (eastwards), then by columns (**southwards**). This is constructed by
#' `gridOrder_sp(G)`, and can be directly set to an object `x` by `setGridOrder_sp(x,G)`; `gridOrder_gstat`
#' is an alias for `gridOrder_sp`.
#'
#' @export
#' @aliases getGridOrder
#' @seealso [sortDataInGrid()] for ways of reordering a grid
#' @examples
#' gt = sp::GridTopology(cellcentre.offset=c(1,11), cellsize=c(1,1), cells.dim=c(5,3))
#' sp::coordinates(sp::SpatialGrid(grid=gt))
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#' gridOrder_sp(2)
setGridOrder = function(x, refpoint, cycle){
refpoints = gmApply(expand.grid(c("top","bottom"), c("left","right"), c("","surf", "deep")),1, paste, collapse="")
if(!(refpoint %in% refpoints)) stop(paste("setGridOrder: refpoint not understood, must be one of ", paste(refpoints, collapse=", ")))
if(any(sort(cycle)!=(1:length(cycle)))) stop("setGridOder: cycle must be a permutation of c(1,2) in 2D, or c(1,2,3) in 3D")
attr(x,"gridOrder") = list(refpoint=refpoint, cycle=cycle)
return(x)
}
#' @export
getGridOrder = function(x){
res = attr(x, "gridOrder")
if(is.null(res)){
warning("getGridOrder: no grid ordering info found, taking the default, from options()$gmGeostats$gridOrder")
res = options()$gmGeostats$gridOrder
}
return(res)
}
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @param G number of geographic dimensions of the setting, typically `G=2` or `G=3`
#' @export
setGridOrder_sp = function(x, G=2){
attr(x,"gridOrder") = gridOrder_gstat(G=G)
return(x)
}
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @export
setGridOrder_array = function(x, G=2){
attr(x,"gridOrder") = gridOrder_array(G=G)
return(x)
}
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @export
gridOrder_sp <- function(G=2){
refpoint = ifelse(G==2, "topleft", "topleftdeep")
cycle = 1:G
return(list(refpoint=refpoint, cycle=cycle))
}
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @export
gridOrder_gstat <- gridOrder_sp
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @export
gridOrder_array <- function(G=2){
refpoint = ifelse(G==2, "bottomleft", "bottomleftdeep")
cycle = 1:G
return(list(refpoint=refpoint, cycle=cycle))
}
#' @describeIn setGridOrder Set or get the ordering of a grid
#' @export
gridOrder_GSLib <-gridOrder_array
#### internal gstatCokriging2something function ------
#' Reorganisation of cokriged compositions
#'
#' Produce compositional predictions out of a [gstat::gstat()] prediction
#'
#' @param COKresult output of a [gstat::predict.gstat()] cokriging,
#' typically of class "data.frame", [sp::SpatialPointsDataFrame()],
#' [sp::SpatialGridDataFrame()] or [sp::SpatialPixelsDataFrame()]
#' @param ... further arguments needed for nscore (**deprecated**)
#'
#' @return an (N,D)-object of class `c("spatialGridAcomp","acomp")`
#' with the predictions, together with an extra attribute "krigVar"
#' containing the cokriging covariance matrices in an (N, D, D)-array; here N=number of
#' interpolated locations, D=number of original components of the composition
#' @aliases gsi.gstatCokriging2rmult
#' @export
#' @seealso [image_cokriged.spatialGridRmult()] for an example
gsi.gstatCokriging2compo <- function(COKresult, ...) UseMethod("gsi.gstatCokriging2compo", COKresult)
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged compositions
#' @method gsi.gstatCokriging2compo default
#' @export
gsi.gstatCokriging2compo.default <- function(COKresult, ...){
stopifnot(is(COKresult, "Spatial"), "data" %in% slotNames(COKresult))
coord = sp::coordinates(COKresult)
res = gsi.gstatCokriging2compo(cbind(as.data.frame(coord), COKresult@data), ...)
if("grid" %in% slotNames(COKresult)){
G = ncol(coord)
dr = 1+(getGridTopology(COKresult)@cellsize<0)
rp = paste(c("top","bottom")[dr[1]], c("left","right")[dr[2]], sep="")
if(G==3) rp = paste(rp, c("deep", "surf")[dr[3]], sep="")
res = setGridOrder(res, refpoint = rp, cycle = 1:G)
}
return(res)
}
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged compositions
#' @method gsi.gstatCokriging2compo data.frame
#' @param V string or matrix describing which logratio was applied ("ilr", "alr",
#' or a matrix computing the ilr corrdinates; clr is not allowed!)
#' @param orignames names of the original components (optional, but recommended)
#' @param tol for generalized inversion of the matrix (**rarely touched!**)
#' @param nscore boolean, were the data normal score-transformed? (**deprecated**)
#' @param gg in the case that normal score transformation was applied, provide the gstat object! (**deprecated**)
gsi.gstatCokriging2compo.data.frame = function(COKresult, # output of predict.gstat
V=NULL, # string or matrix describing which logratio was applied
orignames=NULL, # names of the original components (OPTIONAL)
tol=1e-12, # for generalized inversion of the matrix (RARELY USED)
nscore=FALSE, # were the data NS-transformed?
gg=NULL, # in the case that NS was applied, provide the gstat object!
... # further arguments needed for nscore
){
if(is.null(V)) stop("error! V must be either one of the strings 'alr', 'ilr' or 'clr', or else the matrix Psi of coordinate definition!")
cn = colnames(COKresult)
prednames = colnames(COKresult)[grep("pred", cn)]
varnames = colnames(COKresult)[grep("var", cn)]
covnames = colnames(COKresult)[grep("cov", cn)]
coordnames = colnames(COKresult)[-c(grep("cov", cn), grep("var", cn), grep("pred", cn))]
D = length(prednames)+1
if(is.null(orignames) & is.matrix(V)) orignames = rownames(V)
if(is.null(orignames)) orignames = paste("v", 1:D, sep="")
if(length(orignames)!=D) stop("names provided not consistent with number of logratio variables. Did you forget the rest?")
prefix = "ilr"
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
if(is.character(V)){
if(V=="ilr"){
V = ilrBase(prediccions)
}else if(V=="alr"){
V = rbind(diag(D-1), -1)
prefix = "alr"
}else if(V=="clr"){
V = (diag(ncol(prediccions))-matrix(1/D, ncol=D, nrow=D))[, -D]
prefix = "clr"
}
}
Vsvd = svd(V)
W = with(Vsvd, v %*% diag(ifelse(d>tol, 1/d, 0)) %*% t(u) )
colnames(W) = orignames
if(nscore){
## space to back-transform the predictions
#if(is.null(gg))stop("To apply a nscore backtransformation, the gstat object must be provided!")
#for(i in 1:(D-1)){
# nsc = list()
# nsc$trn.table = attr(gg$data[[i]]$data@data[,i],"trn.table")
# prediccions[,i] = backtr(scores=prediccions[,i], nscore=nsc,...)
#}
stop("gsi.gstatCokriging2compo: use of 'nscore' is deprecated")
}
rg = clrInv(as.matrix(prediccions) %*% W)
# add geographic coordinates as an attribute
attr(rg,"coords") = COKresult[,coordnames]
if(!nscore){
# add cokriging variance matrices as an attribute as well
noms = sub(".pred", "", prednames)
cvmat = array(0, dim=c(nrow(rg), D-1, D-1), dimnames=list(NULL, noms, noms))
colnames(vrs) = sub(".var", "", varnames)
for(ivr in noms){
cvmat[ ,ivr, ivr] = vrs[,ivr]
}
colnames(cvs) = sub("cov.", "", covnames)
for(ivr in noms){
for(jvr in noms){
if(ivr!=jvr){
dosnoms = c(paste(ivr, jvr, sep="."), paste(jvr, ivr, sep="."))
quin = dosnoms[dosnoms %in% colnames(cvs)]
cvmat[ ,ivr, jvr] = cvs[,quin]
}
}
}
attr(rg,"krigVar") = cvmat
}
class(rg) = c("spatialGridAcomp","acomp")
return(rg)
}
#' @export
gsi.gstatCokriging2rmult <- function(COKresult, ...) UseMethod("gsi.gstatCokriging2rmult", COKresult)
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged multivariate data
#' @method gsi.gstatCokriging2rmult default
gsi.gstatCokriging2rmult.default <- function(COKresult, ...){
stopifnot(is(COKresult, "Spatial"), "data" %in% slotNames(COKresult))
coord = sp::coordinates(COKresult)
res = gsi.gstatCokriging2rmult(cbind(coord, COKresult@data), ...)
if("grid" %in% slotNames(COKresult)){
G = ncol(coord)
dr = 1+(getGridTopology(COKresult)@cellsize<0)
rp = paste(c("top","bottom")[dr[1]], c("left","right")[dr[2]], sep="")
if(G==3) rp = paste(rp, c("deep", "surf")[dr[3]], sep="")
res = setGridOrder(res, refpoint = rp, cycle = 1:G)
}
return(res)
}
#' @describeIn gsi.gstatCokriging2compo Reorganisation of cokriged multivariate data
#' @method gsi.gstatCokriging2rmult data.frame
gsi.gstatCokriging2rmult.data.frame = function(COKresult, # output of predict.gstat
nscore=FALSE, # were the data NS-transformed?
gg=NULL, # in the case that NS was applied, provide the gstat object!
... # further arguments needed for nscore
){
cn = colnames(COKresult)
prednames = colnames(COKresult)[grep("pred", cn)]
varnames = colnames(COKresult)[grep("var", cn)]
covnames = colnames(COKresult)[grep("cov", cn)]
coordnames = colnames(COKresult)[-c(grep("cov", cn), grep("var", cn), grep("pred", cn))]
D = length(prednames)
noms = sub(".pred", "", prednames)
prediccions = rmult(COKresult[,prednames, drop=FALSE])
if(nscore){
## space to back-transform the predictions
#if(is.null(gg))stop("To apply a nscore backtransformation, the gstat object must be provided!")
#for(i in 1:(D-1)){
# nsc = list()
# nsc$trn.table = attr(gg$data[[i]]$data@data[,i],"trn.table")
# prediccions[,i] = backtr(scores=prediccions[,i], nscore=nsc,...)
#}
stop("gsi.gstatCokriging2compo: use of 'nscore' is deprecated")
}
rg = prediccions
colnames(rg) = noms
# add geographic coordinates as an attribute
attr(rg,"coords") = COKresult[,coordnames]
if(!nscore){
# add cokriging variance matrices as an attribute as well
cvmat = array(0, dim=c(nrow(rg), D, D), dimnames=list(NULL, noms, noms))
colnames(vrs) = sub(".var", "", varnames)
for(ivr in noms){
cvmat[ ,ivr, ivr] = vrs[,ivr]
}
colnames(cvs) = sub("cov.", "", covnames)
for(ivr in noms){
for(jvr in noms){
if(ivr!=jvr){
dosnoms = c(paste(ivr, jvr, sep="."), paste(jvr, ivr, sep="."))
quin = dosnoms[dosnoms %in% colnames(cvs)]
cvmat[ ,ivr, jvr] = cvs[,quin]
}
}
}
attr(rg,"krigVar") = cvmat
}
class(rg) = c("spatialGridRmult","rmult")
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
return(rg)
}
#### spatial grids for package "compositions" ------------
# (first attempt: ideally they should be extensions of Spatial)
#' Construct a regionalized composition / reorder compositional simulations
#'
#' Connect some coordinates to a composition (of hard data, of predictions
#' or of simulations); currently, the coordinates
#' are stored in an attribute and the dataset is given a complex S3 class.
#' This functionality **will** change in the future, to make use of package
#' "sp" classes.
#'
#' @param coords coordinates of the locations
#' @param compo (observed or predicted) compositional data set; or else array of
#' simulated compositions
#' @param dimcomp which of the dimensions of `compo` does correspond to the
#' parts of the compositon?
#' @param dimsim if `compo` contains simulations, which of its dimensions does
#' run across the realisations? leave it as NA if `compo` has observations or predictions.
#' @return A (potentially transposed/aperm-ed) matrix of class c("spatialGridAcomp","acomp")
#' with the coordinates in an extra attribute "coords".
#' @seealso [image_cokriged.spatialGridAcomp()] for an example; [gsi.gstatCokriging2compo()] to
#' restructure the output from [gstat::predict.gstat()] confortably
#' @export
spatialGridAcomp = function(coords, compo, dimcomp=2, dimsim=NA){
res = compo
if(is.na(dimsim)){
if(dimcomp==1){
res = t(res)
}
}else{
res = aperm(res, order(c(1,dimsim, dimcomp)))
}
attr(res,"coords") = coords
class(res) = c("spatialGridAcomp","acomp")
return(res)
}
#' Construct a regionalized multivariate data
#'
#' Connect some coordinates to a multivariate data set (of hard data, of predictions
#' or of simulations); currently, the coordinates
#' are stored in an attribute and the dataset is given a complex S3 class.
#' This functionality **will** change in the future, to make use of package
#' "sp" classes.
#'
#' @param coords coordinates of the locations
#' @param data (observed or predicted) rmult or matrix data set; or else array of
#' simulated rmult /real-valued multivariate data
#' @param dimcomp which of the dimensions of `data` does correspond to the
#' variables?
#' @param dimsim if `data` contains simulations, which of its dimensions does
#' run across the realisations? leave it as NA if `data` has observations or predictions.
#' @return A (potentially transposed/aperm-ed) matrix of class c("spatialGridAcomp","acomp")
#' with the coordinates in an extra attribute "coords".
#' @seealso [image_cokriged.spatialGridRmult()] for an example; [gsi.gstatCokriging2rmult()] to
#' restructure the output from [gstat::predict.gstat()] confortably
#' @export
spatialGridRmult = function(coords, data, dimcomp=2, dimsim=NA){
res = data
if(is.na(dimsim)){
if(dimcomp==1){
res = t(res)
}
}else{
res = aperm(res, order(c(1,dimsim, dimcomp)))
}
attr(res,"coords") = coords
class(res) = c("spatialGridRmult","rmult")
return(res)
}
#### image functions for cokriging results ---------
#' Plot an image of gridded data
#'
#' Plot an image of one variable (possibly, one realisation) of output
#' of cokriging or cosimulation functions.
#'
#' @param x object with the interpolated / simulated data; currently there are methods
#' for "spatialGridAcomp" and "spatialGridRmult", but the default method is able to
#' deal with "SpatialPointsDataFrame", "SpatialPixelsDataFrame" and "SpatialGridDataFrame"
#' objects, and with the "data.frame" output of [gstat::predict.gstat()] and
#' @param ... generic functionality, currently ignored
#'
#' @return Invisibly, a list with elements `breaks` and `col` containing the breaks
#' and hexadecimal colors finally used for the z-values of the image. Particularly
#' useful for plotting other plotting elements on the same color scale.
#' @export
#' @importFrom stats quantile
#' @importFrom graphics layout image title axis abline matplot matlines matpoints
#'
#' @examples
#' \dontrun{
#' getTellus(cleanup=TRUE, TI=TRUE)
#' load("Tellus_TI.RData")
#' head(Tellus_TI)
#' coords = as.matrix(Tellus_TI[,1:2])
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#' dt = spatialGridAcomp(coords=coords, compo=compo)
#' image_cokriged(dt, ivar="MgO") # equi-spaced
#' image_cokriged(dt, ivar="MgO", breaks = NULL) # equi-probable
#' }
image_cokriged <- function(x, ...) UseMethod("image_cokriged", x)
#' @describeIn image_cokriged Plot an image of gridded data
#' @param ivar which variable do you want to plot?
#' @param breaks either the approximate number of breaks, or the vector of
#' exact breaks to use for the plotting regions of the chosen variable
#' @param col vector of colors to use for the image
#' @param legendPropSpace which proportion of surface of the device should be used
#' for the legend? trial and error might be necessary to adjust this to your needs
#' @param legendPos where do you want your legend? one of c("top","left","right","bottom")
#' @param main main title for the plot
#' @method image_cokriged default
#' @export
image_cokriged.default <- function(x, ivar=3,
breaks=quantile(as.data.frame(x)[,ivar], probs=c(0:10)/10, na.rm=TRUE),
col = spectralcolors(length(breaks)-1),
legendPropSpace = 0.2, legendPos="top",
main=ifelse(is.character(ivar),ivar,colnames(x)[ivar]),
...){
if(is(x,"SpatialGridDataFrame")){
coords = sp::coordinates(x)
# choose variables
z = x@data[,ivar]
}else if(is(x,"SpatialPixelsDataFrame")){
coords0 = as(x, "SpatialPoints")
gt = getGridTopology(x)
idx = getGridIndex(cc=sp::coordinates(coords0), grid=gt)
# choose variables
z = rep(NA, prod(gt@cells.dim))
z[idx] = x@data[,ivar]
coords = sp::coordinates(gt)
}else if(is(x,"SpatialPointsDataFrame")){
coords0 = as(x, "SpatialPoints")
gt = points2grid(coords0)
idx = getGridIndex(cc=sp::coordinates(coords0), grid=gt)
# choose variables
z = rep(NA, prod(gt@cells.dim))
z[idx] = x@data[,ivar]
coords = sp::coordinates(gt)
}else{
coords = x[,1:2]
# choose variables
z = x[,ivar]
}
if(length(breaks)==1) breaks = pretty(z, n = breaks)
if(length(breaks)-length(col)!=1) col = colorRampPalette(col)(length(breaks)-1)
if(is.logical(legendPos)){
if(legendPos) legendPos = "top"
}
if(!is.logical(legendPos)){
# make sure where the color legend goes
par(oma=c(1,1,1,1))
if(legendPos %in% c("top","left")){
ord = 1:2
space = c(legendPropSpace,1-legendPropSpace)
}else if(legendPos %in% c("right","bottom")){
ord = 2:1
space = c(1-legendPropSpace,legendPropSpace)
}else stop("legend must be one of 'top', 'left', 'bottom' or 'right'")
if(legendPos %in% c("top","bottom")){
ord = matrix(ord,ncol=1)
layout(ord,widths=1, heights=space)
a = ifelse(legendPos=="top", 4,1)
par(mar=c(4.5-a,5,a,0.1))
image(breaks, c(0,1), cbind(breaks, breaks), breaks=breaks, col=col, xlab="", ylab="",
par(mar=c(4.5,5,1+a,0.1))
}else{
ord = matrix(ord,nrow=1)
layout(ord,widths=space, heights=1)
par(mar=c(4.5,5,2,0.1))
image(c(0,1), breaks, rbind(breaks, breaks), breaks=breaks, col=col, xlab="", ylab="", xaxt="n",
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
par(mar=c(4.5,5,2,0.1))
}
}
# sort the data so that it can be plotted with image
oo = order(coords[,2], coords[,1])
coords = coords[oo,]
z = z[oo]
# dimensionalizse
xx = sort(unique(coords[,1]))
yy = sort(unique(coords[,2]))
dim(z) = c(length(xx),length(yy))
# plot!
image(xx,yy,z, breaks=breaks, col=col,
xlab=colnames(coords)[1],ylab=colnames(coords)[2], asp=1)
title(main=main, outer=TRUE, line=-1)
invisible(list(breaks=breaks, col=col))
}
#' @describeIn image_cokriged method for spatialGridRmult objects
#' @param isim in case of simulated output, which simulation?
#' @param mask optional mask object if `x` is of class "spatialGridAcomp" or
#' "spatialGridRmult", and they have been masked (see [setMask()])
#' @method image_cokriged spatialGridRmult
#' @export
image_cokriged.spatialGridRmult<- function(x, ivar=1, isim=NULL, breaks=10, mask=attr(x, "mask"),
col = spectralcolors(length(breaks)-1),
legendPropSpace = 0.2, legendPos="top",
main=ifelse(is.character(ivar),ivar,dimnames(x)[[length(dimnames(x))]][ivar]),
...){
# define data, and if necessary, breaks:
if(is.null(isim)){
X = x[,ivar]
}else{
X = x[,isim, ivar]
}

Raimon Tolosana-Delgado
committed
if(!is.null(mask) & inherits(mask,"mask")){
if(!is.null(attr(mask, "fullgrid"))){
X = unmask(data.frame(X), mask=mask)[,1]
coords = sp::coordinates(attr(mask, "fullgrid"))
}else stop("mask should be a 'mask' object with stored fullgrid!")
}else{
coords = attr(x, "coords")
}
oo = order(coords[,2], coords[,1])
X = X[oo]
xx = sort(unique(coords[,1]))
yy = sort(unique(coords[,2]))
dim(X) = c(length(xx),length(yy))
if(is.null(breaks))
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
if(length(breaks)==1) breaks = pretty(X, n = breaks)
if(length(breaks)-length(col)!=1) col = colorRampPalette(col)(length(breaks)-1)
# make sure where the color legend goes
par(oma=c(1,1,1,1))
if(legendPos %in% c("top","left")){
ord = 1:2
space = c(legendPropSpace,1-legendPropSpace)
}else if(legendPos %in% c("right","bottom")){
ord = 2:1
space = c(1-legendPropSpace,legendPropSpace)
}else stop("legend must be one of 'top', 'left', 'bottom' or 'right'")
if(legendPos %in% c("top","bottom")){
ord = matrix(ord,ncol=1)
layout(ord,widths=1, heights=space)
a = ifelse(legendPos=="top", 4,1)
par(mar=c(4.5-a,5,a,0.1))
image(breaks, c(0,1), cbind(breaks, breaks), breaks=breaks, col=col, xlab="", ylab="",
yaxt="n", xaxs="i", xlim=range(breaks))
par(mar=c(4.5,5,1+a,0.1))
}else{
ord = matrix(ord,nrow=1)
layout(ord,widths=space, heights=1)
par(mar=c(4.5,5,2,0.1))
image(c(0,1), breaks, rbind(breaks, breaks), breaks=breaks, col=col, xlab="", ylab="", xaxt="n",
yaxs="i", ylim=range(breaks))
par(mar=c(4.5,5,2,0.1))
}
image(xx, yy, X, breaks=breaks, col=col,
xlab=colnames(coords)[1],
ylab=colnames(coords)[2], asp=1)
title(main=main, outer=TRUE, line=-1)
invisible(list(breaks=breaks, col=col))
}
#' @describeIn image_cokriged method for spatialGridAcomp objects
#' @param isim in case of simulated output, which simulation?
#' @param mask optional mask object if `x` is of class "spatialGridAcomp" or
#' "spatialGridRmult", and they have been masked (see [setMask()])
#' @method image_cokriged spatialGridAcomp
#' @export
image_cokriged.spatialGridAcomp <- image_cokriged.spatialGridRmult
### grid sorting --------
#' Reorder data in a grid
#'
#' Reorder the data in a compact grid, changing between ordering specifications
#'
#' @param x gridded data
#' @param grid grid topology underlying
#' @param orderIn current ordering description (see [setGridOrder()])
#' @param orderOut desired output ordering description (see [setGridOrder()])
#'
#' @return the data from `x` (typically a matrix), but reordered as `orderOut`
#' @export
#' @seealso [setGridOrder()] for ways of specifying the grid ordering
#' @importClassesFrom sp Spatial
#' @importFrom sp getGridTopology proj4string point.in.polygon
#' @importFrom sp getGridIndex points2grid
#' @examples
#' \dontrun{
#' getTellus(cleanup=TRUE, TI=TRUE)
#' load("Tellus_TI.RData")
#' coords = as.matrix(Tellus_TI[,1:2])
#' compo = compositions::acomp(Tellus_TI[,3:7])
#' dt = spatialGridAcomp(coords=coords, compo=compo)
#' image_cokriged(dt, ivar="MgO", breaks = NULL)
#' x = sort(unique(coords[,1]))
#' y = sort(unique(coords[,2]))
#' x0 = c(min(x), min(y))
#' Ax = c(mean(diff(x)), mean(diff(y)))
#' n = c(length(x), length(y))
#' gr = sp::GridTopology(cellcentre.offset=x0, cellsize=Ax, cells.dim=n)
#' dt0 = sortDataInGrid(Tellus_TI, grid=gr, orderIn=gridOrder_array(2),
#' orderOut=list(refpoint="bottomright", cycle=2:1))
#' coords = as.matrix(dt0[,1:2])
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#' spatialGridAcomp(coords=coords, compo=compo)
#' }
sortDataInGrid = function(x, grid=attr(x, "grid"),
orderIn=attr(x, "gridOrder"),
orderOut=list(refpoint="bottomleft", cycle=1:2)){
if(is.null(grid)) stop("sortDataInGrid: grid argument cannot be null")
if(is.null(orderIn)) orderIn = list(refpoint = "topleft", cycle = 1:min(dim(as.data.frame(grid))))
if(is(grid,"SpatialGrid")) return(sortDataInGrid(x=x, grid=getGridTopology(grid), orderIn = orderIn, orderOut = orderOut))
if(is(x, "Spatial")) return(sortDataInGrid(x=x@data, grid=grid, orderIn = orderIn, orderOut = orderOut))
if(length(dim(x))==0) x = matrix(x, nrow=length(x), ncol=1)
# indexes array
G = length(orderIn$cycle)
ocycle = (1:G)[orderIn$cycle]
i = aperm( array(1:nrow(x), dim = grid@cells.dim[orderIn$cycle] ), perm = ocycle)
# flip
dd = dim(i)
irow = 1:(dd[1])
icol = 1:(dd[2])
if(length(grep("right",orderIn$refpoint))>0) irow = rev(irow)
if(length(grep("top",orderIn$refpoint))>0) icol = rev(icol)
if(grid@cellsize[1]<0) irow = rev(irow)
if(grid@cellsize[2]<0) icol = rev(icol)
if(G==3){
ideep = 1:(dd[3])
if(length(grep("surf",orderIn$refpoint))>0) ideep = rev(ideep)
if(grid@cellsize[3]<0) ideep = rev(ideep)
i = i[irow, icol, ideep]
}else{
i = i[irow, icol]
}
y = x[i,, drop=T]
if(all(orderOut$cycle==1:G) & orderOut$refpoint=="bottomleft") return(y)
ocycle = (1:G)[orderOut$cycle]
j = aperm( array((1:length(i))[i], dim = grid@cells.dim[orderOut$cycle] ), perm = ocycle)
dd = dim(j)
jrow = 1:(dd[1])
jcol = 1:(dd[2])
if(length(grep("right",orderOut$refpoint))>0) jrow = rev(jrow)
if(length(grep("top",orderOut$refpoint))>0) jcol = rev(jcol)
if(G==3){
jdeep = 1:(dd[3])
if(length(grep("surf",orderOut$refpoint))>0) jdeep = rev(jdeep)
j = j[jrow, jcol, jdeep]
}else{
j = j[jrow, jcol]
}
y = x[j,, drop=T]
return(y)
}