Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#### theoretical variogram ---------------------
#' gmGeostats Variogram models
#' set up a D-variate variogram models
#'
#' @param type constant indicating the model of correlation function
#' @param nugget (DxD)-matrix for the nugget effect
#' @param sill (DxD)-matrix for the partial sills of the correlation function
#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details)
#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc)
#'
#' @return an object of class "gmCgram" containing the linear model of corregionalization
#' of the nugget and the structure given.
#' @details The argument `type` must be an integer indicating the model to be used.
#' Some constants are available to make reading code more understandable. That is, you can
#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce
#' a spherical model. The same applies for the following models: `vg.Gauss=0`;
#' `vg.Exp=vg.Exponential=2`. These constants are available after calling
#' `data("variogramModels")`.
#' No other model is currently available, but this data object will be
#' regularly updated.
#' The constant vector `gsi.validModels` contains all currently valid models.
#'
#' Argument `anisRange` expects a matrix $M$ such that
#' \deqn{
#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t
#' }
#' is the (square of) the lag distance to be fed into the correlation function.
#' @family gmCgram
#' @export
#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss
#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels
#'
#' @examples
#' utils::data("variogramModels") # shortcut for all model constants
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' plot(vm)
setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){
utils::data("variogramModels")
stopifnot(all(dim(sill)==dim(nugget)),
ncol(sill)==nrow(sill),
type %in% gsi.validModels)
dim(sill) = c(1,dim(sill))
dim(anisRanges) = c(1,dim(anisRanges))
vgout <- list(type=type,
data=extraPar,
nugget=nugget,
sill=sill, #(nstru, nvar, nvar)
M=anisRanges # these are "classical" ranges (i.e. distances)
)
class(vgout) = "gmCgram"
return(vgout)
}
#' Subsetting of gmCgram variogram structures
#'
#' Extraction or combination of nested structures of a gmCgram object
#'
#' @param x `gmCgram` variogram object
#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details)
#' @param ... extra arguments for generic functionality
#'
#' @return a `gmCgram` variogram object with the desired structures only.
#' @details This function can be used to: extract the nugget (i=0), extract some
#' structures (i=indices of the structures, possibly including 0 for the nugget),
#' or filter some structures out (i=negative indices of the structures to remove;
#' nugget will always removed in this case). If you want to extract "slots" or
#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together)
#' is obtained by summing (+) two `gmCgram` objects.
#' @export
#' @method [[ gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vm[[1]]
"[[.gmCgram"<- function(x,i,...){
nG = dim(x$M)[3]
nD = dim(x$nugget)[1]
nSo = length(i)
nSi = dim(x$M)[1]
if(i==0){# case only nugget wanted
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget,
sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)),
M=structure(M[1,,], dim=c(nSo, nG, nG))))
}else if( (0 %in% i) & !any(i<0)){
j = i[i>0] # case some structures wanted, including nugget
out = with(x, list(type=type[j],
data=data[j],
nugget=nugget,
sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)),
M=structure(M[j,,], dim=c(nSo-1, nG, nG))))
}else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted
if(all(i<0)) nSo = nSi-nSo
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget*0,
sill=structure(sill[i,,], dim=c(nSo, nD, nD)),
M=structure(M[i,,], dim=c(nSo, nG, nG))))
}else{# unsolvable case
stop("index set i cannot merge 0 and negative numbers")
}
class(out) = class(x)
return(out)
}
#' Combination of gmCgram variogram structures
#'
#' combination of nested structures of a gmCgram object
#'
#' @param x `gmCgram` variogram object
#' @param y `gmCgram` variogram object
#' @export
#' @return The combined nested structures
#' @method + gmCgram
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
"+.gmCgram" <- function(x,y) {
y = as.gmCgram(y)
stopifnot(class(y)=="gmCgram",
dim(x$sill)[-1]==dim(y$sill)[-1],
dim(x$M)[-1]==dim(y$M)[-1])
myfun = function(A,B){
D = dim(A)[2]
nA = dim(A)[1]
nB = dim(B)[1]
dim(A) = c(nA, D^2)
dim(B) = c(nB, D^2)
out = rbind(A, B)
dim(out) = c(nA+nB, D, D)
return(out)
}
x$type = c(x$type, y$type)
x$data= c(x$data, y$data)
x$nugget = x$nugget + y$nugget
x$sill = myfun(x$sill, y$sill)
x$M = myfun(x$M, y$M)
return(x)
}
#' Subsetting of gmCgram variogram structures
#'
#' Extraction of some variables of a gmCgram object
#'
#' @param x \code{gmCgram} variogram object
#' @param i row-indices of the variables to be kept/removed
#' @param j column-indices of the variables to be kept/removed (if only \code{i}
#' is specified, \code{j} will be taken as equal to \code{i}!)
#' @param ... extra arguments for generic functionality
#'
#' @return a \code{gmCgram} variogram object with the desired variables only.
#' @details This function can be used to extract the model for a a subset of variables.
#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}.
#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give
#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively
#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the
#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")}
#' object, otherwise it will be a regular class \code{"gmCgram"} object.
#' If you want to extract "slots" or
#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
#' variogram matrices, use the `[`-notation.
#' @export
#' @method [ gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vm[1,1]
"[.gmCgram"<- function(x,i,j=i,...){
nDi = length(i)
nDj = length(j)
nS = dim(x$M)[1]
out = with(x, list(type=type,
data=data,
nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)),
sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)),
M=M))
class(out) = class(x)
if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out)))
return(out)
}
#' Length, and number of columns or rows
#'
#' Provide number of structures, and nr of variables of an LMC of class gmCgram
#'
#' @param x gmCgram object
#'
#' @return \code{length} returns the number of structures (nugget not counted), while
#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will
#' be also valid for the sill).
#' @export
#' @aliases ncol.gmCgram nrow.gmCgram
#' @family gmCgram functions
#'
#' @method length gmCgram
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' length(vm)
#' ncol(vm)
#' nrow(vm)
length.gmCgram = function(x) length(x$type)
if(!isGeneric("ncol")){
ncol <- function(x) UseMethod("ncol",x)
ncol.default <- base::ncol
}
if(!isGeneric("nrow")){
nrow <- function(x) UseMethod("nrow",x)
nrow.default <- base::nrow
}
ncol.gmCgram = function(x) ncol(x$nugget)
nrow.gmCgram = function(x) nrow(x$nugget)
#' Convert a gmCgram object to an (evaluable) function
#'
#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function
#'
#' @param x a gmCgram object
#' @param ... extra arguments for generic functionality
#'
#' @return a \code{function} that can be evaluated normally, with an argument \code{X}
#' and possibly another argument \code{Y}; both must have the same number of columns
#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}).
#' @export
#' @method as.function gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vgf = as.function(vm)
#' (h = rbind(c(0,1), c(0,0), c(1,1)))
#' vgf(h)
#' predict(vm, h)
as.function.gmCgram = function(x,...){
f <- function(X,Y=X){
if(is(X,"Spatial")) X = sp::coordinates(X)
X = as.matrix(X)
if(is(Y,"Spatial")) Y = sp::coordinates(Y)
Y = as.matrix(Y)
stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3])
ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE)
o = gsi.calcCgram(X,Y,x,ijEqual)
return(o)
}
return(f)
}
#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates
#' @param object gmCgram object
#' @param newdata matrix, data.frame or Spatial object containing coordinates
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' @method predict gmCgram
#' @export
predict.gmCgram = function(object, newdata, ...){
as.function(object)(X=newdata)
}
#' Convert theoretical structural functions to gmCgram format
#'
#' Convert covariance function or variogram models to the format gmCgram
#' of package gmGeostats
#'
#' @param m model to be converted
#' @param ... further parameters
#'
#' @return the covariance/variogram model, recasted to class \code{gmCgram}.
#' This is a generic function. Methods exist for objects of class
#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList}
#' (as provided by package \code{gstat}).
#' @export
#' @family gmCgram functions
as.gmCgram <- function(m, ...) UseMethod("as.gmCgram",m)
#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format
#' @method as.gmCgram default
#' @export
as.gmCgram.default <- function(m,...) m
#' Draw cuves for covariance/variogram models
#'
#' Represent a gmCgram object as a matrix of lines in several plots
#'
#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions
#' @param xlim.up range of lag values to use in plots of the upper triangle
#' @param xlim.lo range of lag values to use in plots of the lower triangle
#' @param vdir.up geograohic directions to represent in the upper triangle
#' @param vdir.lo geograohic directions to represent in the lower triangle
#' @param xlength number of discretization points to use for the curves (defaults to 200)
#' @param varnames string vector, variable names to use in the labelling of axes
#' @param add logical, should a new plot be created or stuff be added to an existing one?
#' @param commonAxis logical, is a common Y axis for all plots in a row desired?
#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted?
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further graphical parameters for the plotting function
#'
#' @return This function is called for its side effect of producing a plot: the plot will be
#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function
#' invisibly returns the graphical parameters that were active before starting the plot. Hence,
#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))},
#' or \code{plot(x, closeplot=TRUE, ...)}.
#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference
#' is only relevant when working with the screen graphical device.
#' @export
#' @method plot gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' plot(vm)
#' plot(vm, cov=FALSE)
plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget),
add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){
Dg = dim(x$M)[2]
Ns = dim(x$M)[1]
Dv = dim(x$nugget)[1]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up) & is.null(vdir.lo)){
vdir.lo = rep(0, Dg)
vdir.lo[1] = 1
dim(vdir.lo) = c(1,Dg)
if(!is.isotropic(x)){
aux = diag(Dg)
if(Dg==3){
vdir.lo = aux[3,]
vdir.up = aux[-3,]
}else
vdir.lo = aux
}
}
if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up))
if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo))
fk = c(sqrt(3),1,3)[x$type+1]*1.25 # range to effective range factor expansion
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,])))
# here we must compute the max M projected on vd.up
xlim.up = c(0, max(fk*maxdist))
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,])))
# here we must compute the max M projected on vd.lo
xlim.lo = c(0, max(fk*maxdist))
}
}
if(!is.null(xlim.up)){
xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength)
}else{ xseq.up=NULL}
if(!is.null(xlim.lo)){
xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength)
}else{ xseq.lo=NULL}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
getVdens = function(vdir, xseq){
if(is.null(vdir)|is.null(xseq)) return(NULL)
Vdens = sapply(1:nrow(vdir), function(k){
X = outer(xseq, vdir[k,])
Y = X[1,,drop=F]*0
gsi.calcCgram(X,Y,x,FALSE)
})
dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir))
if(!cov){
# convert to variogram if cov=FALSE
Y = matrix(rep(0,Dg), ncol=Dg)
C0 = gsi.calcCgram(Y,Y,x,FALSE)
dim(C0) = c(Dv,Dv)
Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances
}
return(Vdens)
}
Vdens.up = getVdens(vdir.up, xseq.up)
Vdens.lo = getVdens(vdir.lo, xseq.lo)
myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matlines(...)
if(!add){
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(Vdens.lo[,,j,])
if(commonAxis) ylim=range(Vdens.lo[,,j,])
myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...)
if(i==j & !add){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(Vdens.up[,,j,])
if(commonAxis) ylim=range(Vdens.up[,,j,])
myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...)
if(i==j & !add){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
invisible(opar)
}
#' Check for anisotropy of a theoretical variogram
#'
#' Checks for anisotropy of a theoretical variogram or covariance function model
#' @param x variogram or covariance model object
#' @param tol tolerance for
#' @param ... extra arguments for generic functionality
#'
#' @return Generic function. Returns of boolean answering the question of the name,
#' or NA if object \code{x} does not contain a known theoretical variogram
#' @export
is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) }
#' @method is.isotropic default
#' @export
is.isotropic.default = function(x, tol=1e-10, ...) NA
#' @method is.isotropic gmCgram
#' @export
is.isotropic.gmCgram = function(x, tol=1e-10, ...){
all(apply(x$M, 1, function(y){
ev = eigen(y, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
#' @method is.isotropic variogramModel
#' @export
is.isotropic.variogramModel = function(x, tol=1e-10, ...){
anis = x[,grep("anis", colnames(x))]
all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) )
}
#' @method is.isotropic variogramModelList
#' @export
is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol)
#' @method is.isotropic LMCAnisCompo
#' @export
is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){
all(sapply(x["A",], 1, function(y){
ev = eigen(y$A, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
#### empirical variogram ---------------------
#' Variogram method for gmSpatialModel objects
#'
#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object
#'
#' @param object a gmSpatialModel object containing spatial data.
#' @param methodPars (currently ignored)
#' @param ... further parameters to [gstat::variogram()]
#'
#' @return Currently the function is just a convenience wrapper on
#' the variogram calculation functionalities of package "gstat",
#' and returns objects of class "\code{gstatVariogram}". Check the
#' help of \code{gstat::variogram} for further information.
#' In the near future, methods will be created, which will depend on
#' the properties of the two arguments provided, \code{object} and
#' \code{methodPars}.
#' @export
#' @importFrom gstat variogram
variogram_gmSpatialModel <- function(object, methodPars=NULL, ...){
if(!is.null(methodPars)) stop("use 'variogram' with named parameters only")
gstat::variogram(as.gstat(object), ...)
}
# Variogram calculations
#
# Compute empricial variograms out of a spatial data object
#
# @param object spatial data container
# @param ... further parameters for variogram calculation
#
# @return depending on the input data, different kinds of empirical variograms
# will be produced. See appropriate method descriptions.
#
# @importFrom sp variogram
# @export
##variogram <- function(object, ...) UseMethod("variogram", object)
# @describeIn variogram
# @method variogram default
# @export
#variogram.default <- function(object, ...){
# return(variogram_gmSpatialModel(object, ...))
#}
#' Empirical variogram or covariance function in 2D
#'
#' compute the empirical variogram or covariance function in a 2D case study
#'
#' @param X matrix of Nx2 columns with the geographic coordinates
#' @param Z matrix or data.frame of data with dimension (N,Dv)
#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s);
#' for covariance function, a (N,Dv)-matrix or a Dv-vector giving the mean values
#' @param maxdist maximum lag distance to consider
#' @param lagNr number of lags to consider
#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving
#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks
#' @param azimuthNr number of azimuths to consider
#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving
#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks
#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction
#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10
#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram
#'
#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They
#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead.
#' @export
#' @family gmEVario functions
#'
#' @examples
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' dim(vge)
#' dimnames(vge)
#' class(vge["gamma",1])
#' dim(vge["gamma",1][[1]])
#' vge["npairs",1]
#' vge["lags",1]
gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)),
maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2,
lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1),
azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr],
maxbreadth=Inf, minpairs=10, cov=FALSE){
# dimensions
N = nrow(X)
Dv = ncol(Z)
Dg = ncol(X)
stopifnot(N==nrow(Z))
if(length(dim(Ff))==0){
stopifnot(N==length(Ff))
}else{
stopifnot(N==nrow(Ff))
}
# expand the information given into a set of columns stating conditions
if(length(dim(lags))==0){
lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1])
if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth
}else if(dim(lags)==2){
lags = data.frame(lags)
colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)]
}else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
if(length(dim(azimuths))==0){
tol = (azimuths[2]-azimuths[1])/2
if(is.na(tol)) tol=180
azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol)
}else if(dim(azimuths)==2){
azimuths = data.frame(azimuths)
colnames(azimuths) = c("minaz","maxaz")
}else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
# compute residuals
if(cov){
kk = 1
if(dim(Z)==dim(Ff)){
Z = Z-Ff
}else if(ncol(Z)==length(c(unlist(Ff)))){
Z = sweep(Z, 2, Ff, "-")
}
}else{
kk = 1 # 2 # we consider each pair only once
Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit
}
# compute pairs
ij = expand.grid(1:nrow(X), 1:nrow(X))# indices
op = ifelse(cov, "*", "-")
ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables
ZZ = aperm(ZZ, c(1,3,2,4))
dim(ZZ) = c(N*N, Dv, Dv)
XX = X[ij[,1],]-X[ij[,2],] # locations
XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2)))
XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi
XXaz = XXaz %% pi # residual to 180°
# output
## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects,
# like logratioVariogramAnisotropy
Nh = nrow(lags)
Na = nrow(azimuths)
vg = array(0, dim=c(Nh, Dv, Dv, Na))
n = array(0, dim=c(Nh, Na))
azs = azimuths * pi/180
res = sapply(1:Na, function(i){
tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz)
zz = ZZ[tk_a,,]
xxabs = XXabs[tk_a]
xxaz = XXaz[tk_a]
tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=")
if(ncol(lags)>2){
tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=")
tk_h = tk_h & tk_b
}
n[,i] = colSums(tk_h)
for(j in 1:Nh){
if(n[j,i]>minpairs){
vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i])
}else{
vg[j,,,i]=NA
}
}
return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i]))
})
# output
attr(res, "directions") = gsi.azimuthInterval(azimuths)
# attr(res, "lags") = gsi.lagClass(lags)
attr(res, "type") = ifelse(cov, "covariance","semivariogram")
class(res) = "gmEVario"
return(res)
}
#' Plot empirical variograms
#'
#' Flexible plot of an empirical variogram of class gmEVario
#'
#' @param x object to print, of class gmEVario
#' @param xlim.up range of X values to be used for the diagrams of the upper triangle
#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle
#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted
#' on the upper triangle
#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle
#' @param varnames variable names to be used
#' @param type string, controlling whether to plot lines, points, etc (see \code{\link{plot}})
#' @param add boolean, add stuff to an existing diagram?
#' @param commonAxis boolean, should vertical axes be shared by all plots in a row?
#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram)
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further parameters to \code{\link{matplot}}
#'
#' @return invisibly, the graphical parameters active before calling the function.
#' This is useful for freezing the plot if you provided `closeplot=FALSE`.
#'
#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been
#' computed along certain distances, recorded in its attributes and retrievable with command
#' \code{\link{ndirections}}.
#' @export
#' @family gmEVario functions
#' @method plot gmEVario
#'
#' @examples
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' plot(vge)
#' plot(vge, pch=22, lty=1, bg="grey")
plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL,
varnames = dimnames(x$gamma)[[2]], type="o",
add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance",
closeplot=TRUE, ...){
Dv = dim(x[1,1][[1]])[2]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x)
if( any(c(vdir.up, vdir.lo)>ndirections(x))){
stop("indicated directions (vdir.up or vdir.lo) do not exist in x")
}
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.up = c(0, maxdist)
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.lo = c(0, maxdist)
}
}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matpoints(type=type, ...)
if(!add){
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&(!is.null(vdir.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&(!is.null(vdir.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
attr(opar, "vdir.up")=vdir.up
attr(opar, "vdir.lo")=vdir.lo
invisible(opar)
}
#' Convert empirical structural function to gmEVario format
#'
#' Convert empirical covariance functions or variograms to the format gmEVario
#' of package gmGeostats
#'
#' @param vgemp variogram/covariance function to be converted
#' @param ... further parameters
#'
#' @return the empirical covariance function or variogram, recasted to class
#' \code{gmEVario}. This is a generic function. Methods exist for objects of
#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy}
#' (for compositional data) and \code{gstatVariogram}
#' (from package \code{gstat}).
#' @export
#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram
#' as.gmEVario.logratioVariogramAnisotropy
#'
#' @family gmEVario functions
as.gmEVario <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)}
as.gmEVario.default <- function(vgemp,...) vgemp
#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms
#' @export
variogramModelPlot <- function(vg, ...) UseMethod("variogramModelPlot", vg)
#' Quick plotting of empirical and theoretical variograms
#' Quick and dirty plotting of empirical variograms/covariances with or without their models
#' @param vg empirical variogram or covariance function
#' @param model optional, theoretical variogram or covariance function
#' @param col colors to use for the several directional variograms
#' @param commonAxis boolean, should all plots in a row share the same vertical axis?
#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further parameters to underlying plot or matplot functions
#'
#' @return The function is primarily called for producing a plot. However, it
#' invisibly returns the graphical parameters active before the call
#' occurred. This is useful for constructing complex diagrams, by adding layers
#' of info. If you want to "freeze" your plot, embed your call in another
#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you
#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`.
#' @export
#' @family variogramModelPlot
#' @family gmEVario functions
#' @family gmCgram functions
#' @seealso [logratioVariogram()]
#' @method variogramModelPlot gmEVario
#'
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2))
#' vm = v1+v2
#' plot(vm, closeplot=TRUE)
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' variogramModelPlot(vge, vm)
#'
#'
variogramModelPlot.gmEVario <- function(vg, model = NULL, # gstat or variogramModelList object containing a variogram model fitted to vg
col = rev(rainbow(ndirections(vg))),
commonAxis = FALSE,
newfig = TRUE, closeplot=TRUE, ...){
opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...)
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
vdir.lo = attr(opar, "vdir.lo")
vdir.up = attr(opar, "vdir.up")
if(is.null(model))
return(invisible(opar))
# OTHERWISE: add the curves for the model
aux = as.directorVector(attr(vg, "directions"))
if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,]
if(!is.null(vdir.up)) vdir.up = aux[vdir.up,]
opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...)
#f = as.function(as.gmCgram(gg))
#Dv = dim(vg$gamma)[2]
#dirs = as.directorVector(attr(vg, "directions"))
#Dg = ncol(dirs)
#for(i in 1:Dv){
# for(j in 1:Dv){
# if((i>=j)&(!is.null(vdir.lo))){
# par(mfg=c(i+1,j,Dv+1,Dv+1))
# dirs.lo = dirs[vdir.lo,, drop=F]
# xlim = par()$usr[1:2]
# hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
# Y = outer(hd, 1:nrow(dirs.lo), function(h,k){
# f(rep(0,Dg), dirs.lo[k,]*h)[i,j]
# })
# matlines(hd, Y, col=col[vdir.lo], ...)
# }
# if((i<=j)&(!is.null(vdir.up))){
# par(mfg=c(i,j+1,Dv+1,Dv+1))
# dirs.up = dirs[vdir.up,, drop=F]
# xlim = par()$usr[1:2]
# hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
# Y = outer(hd, 1:nrow(dirs.up), function(h,k){
# f(rep(0,Dg), dirs.up[k,]*h)[i,j]
# })
# matlines(hd, Y, col=col[vdir.up], ...)
# }
# }}
invisible(opar)
}
#' Number of directions of an empirical variogram
#'
#' Returns the number of directions at which an empirical variogram was computed
#'
#' @param x empirical variogram object
#'
#' @return Generic function. It provides the
#' number of directions at which an empirical variogram was computed
#' @export
#' @family gmEVario functions
#' @family gmCgram functions
#' @seealso [logratioVariogram()], [gstat::variogram()]
ndirections <- function(x){ UseMethod("ndirections", x) }
#' @describeIn ndirections generic method
#' @method ndirections default
#' @export
ndirections.default = function(x) nrow(x)
#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles)
#' @method ndirections azimuth
#' @export
ndirections.azimuth = function(x) length(x)
#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles)
#' @method ndirections azimuthInterval
#' @export
ndirections.azimuthInterval = function(x) length(x[[1]])
#' @describeIn ndirections method for empirical logratio variograms with anisotropy
#' @method ndirections logratioVariogramAnisotropy
#' @export
ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions"))
#' @describeIn ndirections method for empirical logratio variograms without anisotropy
#' @method ndirections logratioVariogram
#' @export
ndirections.logratioVariogram = function(x) 1
#' @describeIn ndirections method for empirical gmGeostats variograms
#' @method ndirections gmEVario
#' @export
ndirections.gmEVario = function(x) ndirections(attr(x,"directions"))
#' @describeIn ndirections method for empirical gstat variograms
#' @method ndirections gstatVariogram
#' @export
ndirections.gstatVariogram = function(x){
length(unique(paste(x$dir.hor, x$dir.ver)))
}
#### internal functions -------------
gsi.azimuth = function(x){
class(x) = c("azimuth","directionClass")
return(x)
}
gsi.azimuthInterval = function(x){
class(x) = c("azimuthInterval","directionClass")
return(x)
}
gsi.directorVector = function(x){
if(length(dim(x))!=2) stop("provided director vectors are not a matrix!")
class(x) = c("directorVector", "directionClass")
return(x)
}
print.directionClass = function(x, complete=TRUE, ...){
cat(paste("with",nrow(as.directorVector(x)),"directions\n"))
if(complete){
print(unclass(x), ...)