-
Raimon Tolosana-Delgado authoredRaimon Tolosana-Delgado authored
variograms.R 41.75 KiB
#### theoretical variogram ---------------------
#' gmGeostats Variogram models
#' set up a D-variate variogram models
#'
#' @param type constant indicating the model of correlation function
#' @param nugget (DxD)-matrix for the nugget effect
#' @param sill (DxD)-matrix for the partial sills of the correlation function
#' @param anisRanges 2x2 or 3x3 matrix of ranges (see details)
#' @param extraPar for certain correlation functions, extra parameters (smoothness, period, etc)
#'
#' @return an object of class "gmCgram" containing the linear model of corregionalization
#' of the nugget and the structure given.
#' @details The argument `type` must be an integer indicating the model to be used.
#' Some constants are available to make reading code more understandable. That is, you can
#' either write `1`, `vg.Sph` or `vg.Spherical`, they will all work and produce
#' a spherical model. The same applies for the following models: `vg.Gauss=0`;
#' `vg.Exp=vg.Exponential=2`. These constants are available after calling
#' `data("variogramModels")`.
#' No other model is currently available, but this data object will be
#' regularly updated.
#' The constant vector `gsi.validModels` contains all currently valid models.
#'
#' Argument `anisRange` expects a matrix $M$ such that
#' \deqn{
#' h^2 = (\mathbf{x}_i-\mathbf{x}_j)\cdot M^{-1}\cdot (\mathbf{x}_i-\mathbf{x}_j)^t
#' }
#' is the (square of) the lag distance to be fed into the correlation function.
#' @family gmCgram
#' @export
#' @aliases vg.Exp vg.exp vg.Exponential vg.Gau vg.gauss
#' vg.Gauss vg.Sph vg.sph vg.Spherical gsi.validModels
#'
#' @examples
#' utils::data("variogramModels") # shortcut for all model constants
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' plot(vm)
setCgram = function(type, nugget=sill*0, sill, anisRanges, extraPar=0){
utils::data("variogramModels")
stopifnot(all(dim(sill)==dim(nugget)),
ncol(sill)==nrow(sill),
type %in% gsi.validModels)
dim(sill) = c(1,dim(sill))
dim(anisRanges) = c(1,dim(anisRanges))
vgout <- list(type=type,
data=extraPar,
nugget=nugget,
sill=sill, #(nstru, nvar, nvar)
M=anisRanges # these are "classical" ranges (i.e. distances)
)
class(vgout) = "gmCgram"
return(vgout)
}
#' Subsetting of gmCgram variogram structures
#'
#' Extraction or combination of nested structures of a gmCgram object
#'
#' @param x `gmCgram` variogram object
#' @param i indices of the structures that are desired to be kept (0=nugget) or removed (see details)
#' @param ... extra arguments for generic functionality
#'
#' @return a `gmCgram` variogram object with the desired structures only.
#' @details This function can be used to: extract the nugget (i=0), extract some
#' structures (i=indices of the structures, possibly including 0 for the nugget),
#' or filter some structures out (i=negative indices of the structures to remove;
#' nugget will always removed in this case). If you want to extract "slots" or
#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
#' variogram matrices, use the `[`-notation. The contrary operation (adding structures together)
#' is obtained by summing (+) two `gmCgram` objects.
#' @export
#' @method [[ gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vm[[1]]
"[[.gmCgram"<- function(x,i,...){
nG = dim(x$M)[3]
nD = dim(x$nugget)[1]
nSo = length(i)
nSi = dim(x$M)[1]
if(i==0){# case only nugget wanted
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget,
sill=structure(0*sill[1,,], dim=c(nSo, nD, nD)),
M=structure(M[1,,], dim=c(nSo, nG, nG))))
}else if( (0 %in% i) & !any(i<0)){
j = i[i>0] # case some structures wanted, including nugget
out = with(x, list(type=type[j],
data=data[j],
nugget=nugget,
sill=structure(sill[j,,], dim=c(nSo-1, nD, nD)),
M=structure(M[j,,], dim=c(nSo-1, nG, nG))))
}else if(all(i>0) | all(i<0)){# case some structured (un)wanted, nugget surely not wanted
if(all(i<0)) nSo = nSi-nSo
out = with(x, list(type=type[i],
data=data[i],
nugget=nugget*0,
sill=structure(sill[i,,], dim=c(nSo, nD, nD)),
M=structure(M[i,,], dim=c(nSo, nG, nG))))
}else{# unsolvable case
stop("index set i cannot merge 0 and negative numbers")
}
class(out) = class(x)
return(out)
}
#' Combination of gmCgram variogram structures
#'
#' combination of nested structures of a gmCgram object
#'
#' @param x `gmCgram` variogram object
#' @param y `gmCgram` variogram object
#' @export
#' @return The combined nested structures
#' @method + gmCgram
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
"+.gmCgram" <- function(x,y) {
y = as.gmCgram(y)
stopifnot(class(y)=="gmCgram",
dim(x$sill)[-1]==dim(y$sill)[-1],
dim(x$M)[-1]==dim(y$M)[-1])
myfun = function(A,B){
D = dim(A)[2]
nA = dim(A)[1]
nB = dim(B)[1]
dim(A) = c(nA, D^2)
dim(B) = c(nB, D^2)
out = rbind(A, B)
dim(out) = c(nA+nB, D, D)
return(out)
}
x$type = c(x$type, y$type)
x$data= c(x$data, y$data)
x$nugget = x$nugget + y$nugget
x$sill = myfun(x$sill, y$sill)
x$M = myfun(x$M, y$M)
return(x)
}
#' Subsetting of gmCgram variogram structures
#'
#' Extraction of some variables of a gmCgram object
#'
#' @param x \code{gmCgram} variogram object
#' @param i row-indices of the variables to be kept/removed
#' @param j column-indices of the variables to be kept/removed (if only \code{i}
#' is specified, \code{j} will be taken as equal to \code{i}!)
#' @param ... extra arguments for generic functionality
#'
#' @return a \code{gmCgram} variogram object with the desired variables only.
#' @details This function can be used to extract the model for a a subset of variables.
#' If only \code{i} is specified, \code{j} will be taken as equal to \code{i}.
#' If you want to select all \code{i}'s for certain \code{j}'s or vice versa, give
#' \code{i=1:dim(x$nugget)[1]} and \code{j=} your desired indices, respectively
#' \code{j=1:dim(x$nugget)[2]} and \code{i=} your desired indices; replace \code{x} by the
#' object you are giving. If \code{i!=j}, the output will be a \code{c("gmXCgram","gmCgram")}
#' object, otherwise it will be a regular class \code{"gmCgram"} object.
#' If you want to extract "slots" or
#' "elements" of the variogram, use the $-notation. If you want to extract variables of the
#' variogram matrices, use the `[`-notation.
#' @export
#' @method [ gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2), anisRanges = 3*diag(c(3,1)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vm[1,1]
"[.gmCgram"<- function(x,i,j=i,...){
nDi = length(i)
nDj = length(j)
nS = dim(x$M)[1]
out = with(x, list(type=type,
data=data,
nugget=structure(nugget[i,j, drop=F], dim=c(nDi, nDj)),
sill=structure(sill[,i,j, drop=F], dim=c(nS, nDi, nDj)),
M=M))
class(out) = class(x)
if(!all(i==j)) class(out) = unique(c("gmXCgram", class(out)))
return(out)
}
#' Length, and number of columns or rows
#'
#' Provide number of structures, and nr of variables of an LMC of class gmCgram
#'
#' @param x gmCgram object
#'
#' @return \code{length} returns the number of structures (nugget not counted), while
#' \code{ncol} and \code{nrow} return these values for the nugget (assuming that they will
#' be also valid for the sill).
#' @export
#' @aliases ncol.gmCgram nrow.gmCgram
#' @family gmCgram functions
#'
#' @method length gmCgram
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' length(vm)
#' ncol(vm)
#' nrow(vm)
length.gmCgram = function(x) length(x$type)
if(!isGeneric("ncol")){
ncol <- function(x) UseMethod("ncol",x)
ncol.default <- base::ncol
}
if(!isGeneric("nrow")){
nrow <- function(x) UseMethod("nrow",x)
nrow.default <- base::nrow
}
ncol.gmCgram = function(x) ncol(x$nugget)
nrow.gmCgram = function(x) nrow(x$nugget)
#' Convert a gmCgram object to an (evaluable) function
#'
#' Evaluate a gmCgram on some h values, or convert the gmCgram object into an evaluable function
#'
#' @param x a gmCgram object
#' @param ... extra arguments for generic functionality
#'
#' @return a \code{function} that can be evaluated normally, with an argument \code{X}
#' and possibly another argument \code{Y}; both must have the same number of columns
#' than the geographic dimension of the variogram (i.e. \code{dim(x$M)[3]}).
#' @export
#' @method as.function gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(2)+0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(2), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' vgf = as.function(vm)
#' (h = rbind(c(0,1), c(0,0), c(1,1)))
#' vgf(h)
#' predict(vm, h)
as.function.gmCgram = function(x,...){
f <- function(X,Y=X){
if(is(X,"Spatial")) X = sp::coordinates(X)
X = as.matrix(X)
if(is(Y,"Spatial")) Y = sp::coordinates(Y)
Y = as.matrix(Y)
stopifnot(ncol(X)==ncol(Y), ncol(X)==dim(x$M)[3])
ijEqual = ifelse(nrow(X)==nrow(Y), all(X==Y), FALSE)
o = gsi.calcCgram(X,Y,x,ijEqual)
return(o)
}
return(f)
}
#' @describeIn as.function.gmCgram predict a gmCgram object on some lag vector coordinates
#' @param object gmCgram object
#' @param newdata matrix, data.frame or Spatial object containing coordinates
#' @include gmAnisotropy.R
#' @method predict gmCgram
#' @export
predict.gmCgram = function(object, newdata, ...){
as.function(object)(X=newdata)
}
#' Convert theoretical structural functions to gmCgram format
#'
#' Convert covariance function or variogram models to the format gmCgram
#' of package gmGeostats
#'
#' @param m model to be converted
#' @param ... further parameters
#'
#' @return the covariance/variogram model, recasted to class \code{gmCgram}.
#' This is a generic function. Methods exist for objects of class
#' \code{LMCAnisCompo} (for compositional data) and \code{variogramModelList}
#' (as provided by package \code{gstat}).
#' @export
#' @family gmCgram functions
as.gmCgram <- function(m, ...) UseMethod("as.gmCgram",m)
#' @describeIn as.gmCgram Convert theoretical structural functions to gmCgram format
#' @method as.gmCgram default
#' @export
as.gmCgram.default <- function(m,...) m
#' Draw cuves for covariance/variogram models
#'
#' Represent a gmCgram object as a matrix of lines in several plots
#'
#' @param x object to draw, of class gmCgram // curently only valid for symmetric functions
#' @param xlim.up range of lag values to use in plots of the upper triangle
#' @param xlim.lo range of lag values to use in plots of the lower triangle
#' @param vdir.up geograohic directions to represent in the upper triangle
#' @param vdir.lo geograohic directions to represent in the lower triangle
#' @param xlength number of discretization points to use for the curves (defaults to 200)
#' @param varnames string vector, variable names to use in the labelling of axes
#' @param add logical, should a new plot be created or stuff be added to an existing one?
#' @param commonAxis logical, is a common Y axis for all plots in a row desired?
#' @param cov logical, should the covariance function (=TRUE) or the variogram (=FALSE) be plotted?
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further graphical parameters for the plotting function
#'
#' @return This function is called for its side effect of producing a plot: the plot will be
#' open to further changes if you provide `closeplot=FALSE`. Additionally, the function
#' invisibly returns the graphical parameters that were active before starting the plot. Hence,
#' if you want to freeze a plot and not add anymore to it, you can do \code{par(plot(x, closeplot=FALSE, ...))},
#' or \code{plot(x, closeplot=TRUE, ...)}.
#' If you want to further add stuff to it, better just call \code{plot(x, closeplot=FALSE,...)}. The difference
#' is only relevant when working with the screen graphical device.
#' @export
#' @method plot gmCgram
#' @family gmCgram functions
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)-0.5, anisRanges = 2*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 0.5*diag(2))
#' vm = v1+v2
#' plot(vm)
#' plot(vm, cov=FALSE)
plot.gmCgram = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL, xlength=200, varnames = colnames(x$nugget),
add=FALSE, commonAxis=TRUE, cov =TRUE, closeplot=TRUE, ...){
Dg = dim(x$M)[2]
Ns = dim(x$M)[1]
Dv = dim(x$nugget)[1]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up) & is.null(vdir.lo)){
vdir.lo = rep(0, Dg)
vdir.lo[1] = 1
dim(vdir.lo) = c(1,Dg)
if(!is.isotropic(x)){
aux = diag(Dg)
if(Dg==3){
vdir.lo = aux[3,]
vdir.up = aux[-3,]
}else
vdir.lo = aux
}
}
if(!is.null(vdir.up)) vdir.up = compositions::oneOrDataset(compositions::normalize(vdir.up))
if(!is.null(vdir.lo)) vdir.lo = compositions::oneOrDataset(compositions::normalize(vdir.lo))
fk = c(sqrt(3),1,3)[x$type+1]*1.25 # range to effective range factor expansion
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.up), function(j) vdir.up[j,]%*%x$M[i,,]%*%vdir.up[j,])))
# here we must compute the max M projected on vd.up
xlim.up = c(0, max(fk*maxdist))
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = sapply(1:Ns, function(i) max(sapply(1:nrow(vdir.lo), function(j) vdir.lo[j,]%*%x$M[i,,]%*%vdir.lo[j,])))
# here we must compute the max M projected on vd.lo
xlim.lo = c(0, max(fk*maxdist))
}
}
if(!is.null(xlim.up)){
xseq.up = seq(from=xlim.up[1], to=xlim.up[2], length.out=xlength)
}else{ xseq.up=NULL}
if(!is.null(xlim.lo)){
xseq.lo = seq(from=xlim.lo[1], to=xlim.lo[2], length.out=xlength)
}else{ xseq.lo=NULL}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
getVdens = function(vdir, xseq){
if(is.null(vdir)|is.null(xseq)) return(NULL)
Vdens = sapply(1:nrow(vdir), function(k){
X = outer(xseq, vdir[k,])
Y = X[1,,drop=F]*0
gsi.calcCgram(X,Y,x,FALSE)
})
dim(Vdens) = c(Dv,xlength,Dv,nrow(vdir))
if(!cov){
# convert to variogram if cov=FALSE
Y = matrix(rep(0,Dg), ncol=Dg)
C0 = gsi.calcCgram(Y,Y,x,FALSE)
dim(C0) = c(Dv,Dv)
Vdens = sweep(-Vdens, c(1,3), C0, "+") ## this must be corrected when we allow non-symmetric covariances
}
return(Vdens)
}
Vdens.up = getVdens(vdir.up, xseq.up)
Vdens.lo = getVdens(vdir.lo, xseq.lo)
myplot = function(...) matplot(type="l",ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matlines(...)
if(!add){
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&!(is.null(vdir.lo)|is.null(xlim.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(Vdens.lo[,,j,])
if(commonAxis) ylim=range(Vdens.lo[,,j,])
myplot(xseq.lo, Vdens.lo[i,,j,], ylim=ylim, ...)
if(i==j & !add){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&!(is.null(vdir.up)|is.null(xlim.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(Vdens.up[,,j,])
if(commonAxis) ylim=range(Vdens.up[,,j,])
myplot(xseq.up, Vdens.up[i,,j,], ylim=ylim,...)
if(i==j & !add){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
invisible(opar)
}
#' Check for anisotropy of a theoretical variogram
#'
#' Checks for anisotropy of a theoretical variogram or covariance function model
#' @param x variogram or covariance model object
#' @param tol tolerance for
#' @param ... extra arguments for generic functionality
#'
#' @return Generic function. Returns of boolean answering the question of the name,
#' or NA if object \code{x} does not contain a known theoretical variogram
#' @export
is.isotropic <- function(x, tol=1e-10, ...){ UseMethod("is.isotropic", x) }
#' @method is.isotropic default
#' @export
is.isotropic.default = function(x, tol=1e-10, ...) NA
#' @method is.isotropic gmCgram
#' @export
is.isotropic.gmCgram = function(x, tol=1e-10, ...){
all(apply(x$M, 1, function(y){
ev = eigen(y, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
#' @method is.isotropic variogramModel
#' @export
is.isotropic.variogramModel = function(x, tol=1e-10, ...){
anis = x[,grep("anis", colnames(x))]
all(apply(anis, 2, function(y) all(abs(y-y[1])<tol) ) )
}
#' @method is.isotropic variogramModelList
#' @export
is.isotropic.variogramModelList = function(x, tol=1e-10, ...) is.isotropic(x[[1]], tol=tol)
#' @method is.isotropic LMCAnisCompo
#' @export
is.isotropic.LMCAnisCompo = function(x, tol=1e-10, ...){
all(sapply(x["A",], 1, function(y){
ev = eigen(y$A, only.values=TRUE)[[1]]
all(abs(ev-ev[1])<tol)
}))
}
#### empirical variogram ---------------------
#' Variogram method for gmSpatialModel objects
#'
#' Compute the empirical variogram of the conditioning data contained in a [gmSpatialModel-class] object
#'
#' @param object a gmSpatialModel object containing spatial data.
#' @param methodPars (currently ignored)
#' @param ... further parameters to [gstat::variogram()]
#'
#' @return Currently the function is just a convenience wrapper on
#' the variogram calculation functionalities of package "gstat",
#' and returns objects of class "\code{gstatVariogram}". Check the
#' help of \code{gstat::variogram} for further information.
#' In the near future, methods will be created, which will depend on
#' the properties of the two arguments provided, \code{object} and
#' \code{methodPars}.
#' @export
#' @importFrom gstat variogram
variogram_gmSpatialModel <- function(object, methodPars=NULL, ...){
if(!is.null(methodPars)) stop("use 'variogram' with named parameters only")
gstat::variogram(as.gstat(object), ...)
}
# Variogram calculations
#
# Compute empricial variograms out of a spatial data object
#
# @param object spatial data container
# @param ... further parameters for variogram calculation
#
# @return depending on the input data, different kinds of empirical variograms
# will be produced. See appropriate method descriptions.
#
# @importFrom sp variogram
# @export
##variogram <- function(object, ...) UseMethod("variogram", object)
# @describeIn variogram
# @method variogram default
# @export
#variogram.default <- function(object, ...){
# return(variogram_gmSpatialModel(object, ...))
#}
#' Empirical variogram or covariance function in 2D
#'
#' compute the empirical variogram or covariance function in a 2D case study
#'
#' @param X matrix of Nx2 columns with the geographic coordinates
#' @param Z matrix or data.frame of data with dimension (N,Dv)
#' @param Ff for variogram, matrix of basis functions with nrow(Ff)=N (can be a N-vector of 1s);
#' for covariance function, a (N,Dv)-matrix or a Dv-vector giving the mean values
#' @param maxdist maximum lag distance to consider
#' @param lagNr number of lags to consider
#' @param lags if maxdist and lagNr are not specified, either: (a) a matrix of 2 columns giving
#' minimal and maximal lag distance defining the lag classes to consider, or (b) a vector of lag breaks
#' @param azimuthNr number of azimuths to consider
#' @param azimuths if azimuthNr is not specified, either: (a) a matrix of 2 columns giving
#' minimal and maximal azimuth defining the azimuth classes to consider, or (b) a vector of azimuth breaks
#' @param maxbreadth maximal breadth (in lag units) orthogonal to the lag direction
#' @param minpairs minimal number of pairs falling in each class to consider the calculation sufficient; defaults to 10
#' @param cov boolean, is covariance (TRUE) or variogram (FALSE) desired? defaults to variogram
#'
#' @return An empirical variogram for the provided data. NOTE: avoid using directly gsi.* functions! They
#' represent either internal functions, or preliminary, not fully-tested functions. Use \code{\link{variogram}} instead.
#' @export
#' @family gmEVario functions
#'
#' @examples
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' dim(vge)
#' dimnames(vge)
#' class(vge["gamma",1])
#' dim(vge["gamma",1][[1]])
#' vge["npairs",1]
#' vge["lags",1]
gsi.EVario2D = function(X,Z,Ff=rep(1, nrow(X)),
maxdist= max(dist(X[sample(nrow(X),min(nrow(X),1000)),]))/2,
lagNr = 15, lags = seq(from=0, to=maxdist, length.out=lagNr+1),
azimuthNr=4, azimuths = seq(from=0, to=180, length.out=azimuthNr+1)[1:azimuthNr],
maxbreadth=Inf, minpairs=10, cov=FALSE){
# dimensions
N = nrow(X)
Dv = ncol(Z)
Dg = ncol(X)
stopifnot(N==nrow(Z))
if(length(dim(Ff))==0){
stopifnot(N==length(Ff))
}else{
stopifnot(N==nrow(Ff))
}
# expand the information given into a set of columns stating conditions
if(length(dim(lags))==0){
lags = data.frame(minlag=lags[-length(lags)], maxlag=lags[-1])
if(maxbreadth!=Inf) lags[,"maxbreadth"]=maxbreadth
}else if(dim(lags)==2){
lags = data.frame(lags)
colnames(lags) = c("minlag","maxlag","maxbreadth")[1:ncol(lags)]
}else stop("lags can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
if(length(dim(azimuths))==0){
tol = (azimuths[2]-azimuths[1])/2
if(is.na(tol)) tol=180
azimuths = data.frame(minaz=azimuths-tol, maxaz=azimuths+tol)
}else if(dim(azimuths)==2){
azimuths = data.frame(azimuths)
colnames(azimuths) = c("minaz","maxaz")
}else stop("azimuths can be either a vector of lags or a data.frame, see ?gsi.EVario2D")
# compute residuals
if(cov){
kk = 1
if(dim(Z)==dim(Ff)){
Z = Z-Ff
}else if(ncol(Z)==length(c(unlist(Ff)))){
Z = sweep(Z, 2, Ff, "-")
}
}else{
kk = 1 # 2 # we consider each pair only once
Z = lm(as.matrix(Z)~as.matrix(Ff)+0)$residuals ## ideally this should be a GLS fit
}
# compute pairs
ij = expand.grid(1:nrow(X), 1:nrow(X))# indices
op = ifelse(cov, "*", "-")
ZZ = outer(as.matrix(Z),as.matrix(Z), op) # variables
ZZ = aperm(ZZ, c(1,3,2,4))
dim(ZZ) = c(N*N, Dv, Dv)
XX = X[ij[,1],]-X[ij[,2],] # locations
XXabs = gmApply(XX, 1, function(x) sqrt(sum(x^2)))
XXaz = gmApply(XX, 1, function(x) pi/2-atan2(x[2],x[1])) +2*pi
XXaz = XXaz %% pi # residual to 180°
# output
## ATTENTION: needs to be changed to return a structure (3,Na)-matrix of objects,
# like logratioVariogramAnisotropy
Nh = nrow(lags)
Na = nrow(azimuths)
vg = array(0, dim=c(Nh, Dv, Dv, Na))
n = array(0, dim=c(Nh, Na))
azs = azimuths * pi/180
res = sapply(1:Na, function(i){
tk_a = (azs[i,1]<=XXaz) & (azs[i,2]>=XXaz)
zz = ZZ[tk_a,,]
xxabs = XXabs[tk_a]
xxaz = XXaz[tk_a]
tk_h = outer(xxabs, lags[,1],">=") & outer(xxabs, lags[,2],"<=")
if(ncol(lags)>2){
tk_b = outer(xxabs * abs(sin((xxaz-(azs[i,2]-azs[i,1])))), lags[,3], "<=")
tk_h = tk_h & tk_b
}
n[,i] = colSums(tk_h)
for(j in 1:Nh){
if(n[j,i]>minpairs){
vg[j,,,i] = gmApply(zz[tk_h[,j],,], c(2,3),"sum")/(kk*n[j,i])
}else{
vg[j,,,i]=NA
}
}
return(list(gamma=vg[,,,i], lags=gsi.lagClass(lags), npairs =n[,i]))
})
# output
attr(res, "directions") = gsi.azimuthInterval(azimuths)
# attr(res, "lags") = gsi.lagClass(lags)
attr(res, "type") = ifelse(cov, "covariance","semivariogram")
class(res) = "gmEVario"
return(res)
}
#' Plot empirical variograms
#'
#' Flexible plot of an empirical variogram of class gmEVario
#'
#' @param x object to print, of class gmEVario
#' @param xlim.up range of X values to be used for the diagrams of the upper triangle
#' @param xlim.lo range of X values to be used for the diagrams of the lower triangle
#' @param vdir.up in case of anisotropic variograms, indices of the directions to be plotted
#' on the upper triangle
#' @param vdir.lo ..., indices of the directions to be plotted on the lower triangle
#' @param varnames variable names to be used
#' @param type string, controlling whether to plot lines, points, etc (see \code{\link{plot}})
#' @param add boolean, add stuff to an existing diagram?
#' @param commonAxis boolean, should vertical axes be shared by all plots in a row?
#' @param cov boolean, is this a covariance? (if FALSE, it is a variogram)
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further parameters to \code{\link{matplot}}
#'
#' @return invisibly, the graphical parameters active before calling the function.
#' This is useful for freezing the plot if you provided `closeplot=FALSE`.
#'
#' How to use arguments `vdir.lo` and `vdir.up`? Each empirical variogram \code{x} has been
#' computed along certain distances, recorded in its attributes and retrievable with command
#' \code{\link{ndirections}}.
#' @export
#' @family gmEVario functions
#' @method plot gmEVario
#'
#' @examples
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' plot(vge)
#' plot(vge, pch=22, lty=1, bg="grey")
plot.gmEVario = function(x, xlim.up=NULL, xlim.lo=NULL, vdir.up= NULL, vdir.lo= NULL,
varnames = dimnames(x$gamma)[[2]], type="o",
add=FALSE, commonAxis=TRUE, cov =attr(x,"type")=="covariance",
closeplot=TRUE, ...){
Dv = dim(x[1,1][[1]])[2]
if(is.null(varnames)) varnames = paste("v", 1:Dv, sep="")
if(is.null(vdir.up)&is.null(vdir.lo)) vdir.lo <- 1:ndirections(x)
if( any(c(vdir.up, vdir.lo)>ndirections(x))){
stop("indicated directions (vdir.up or vdir.lo) do not exist in x")
}
if(is.null(xlim.up)){
if(add){
par(mfg=c(1,2))
xlim.up = par()$usr[1:2]
}else if(!is.null(vdir.up)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.up = c(0, maxdist)
}
}
if(is.null(xlim.lo)){
if(add){
par(mfg=c(2,1))
xlim.lo = par()$usr[1:2]
}else if(!is.null(vdir.lo)){
maxdist = max(sapply(x["lags",], gsi.midValues.lagClass ) )
xlim.lo = c(0, maxdist)
}
}
opar = par()
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
myplot = function(...) matplot(type=type, ylab="", xlab="",xaxt="n", ...)
if(add) myplot = function(...) matpoints(type=type, ...)
if(!add){
myplot(c(0,0), c(0,0), pch="", ann=FALSE, bty="n", yaxt="n")
par(mfrow=c(Dv+1,Dv+1), mar=c(2,3,0,0), oma=c(1,4,1,1), xpd=NA)
}
for(i in 1:Dv){
for(j in 1:Dv){
if((i>=j)&(!is.null(vdir.lo))){
par(mfg=c(i+1,j,Dv+1,Dv+1))
ylim = range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.lo, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.lo, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 3)
mtext(text=varnames[i], side = 3, line=3)
mtext(text=varnames[i], side = 4, line=3)
}
}
if((i<=j)&(!is.null(vdir.up))){
par(mfg=c(i,j+1,Dv+1,Dv+1))
ylim = range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]))
if(commonAxis) ylim=range(sapply(vdir.up, function(kk) x["gamma",kk][[1]][,,j]))
myplot(
sapply(vdir.up, function(kk) gsi.midValues.lagClass(x["lags",kk][[1]])),
sapply(vdir.up, function(kk) x["gamma",kk][[1]][,i,j]), ylim=ylim, ...)
if(i==j){
axis(side = 1)
mtext(text=varnames[i], side = 1, line=3)
mtext(text=varnames[i], side = 2, line=3)
}
}
}}
mtext(text="lag distance", side=1, outer = TRUE, line=0)
mtext(text=c("semivariogram","covariance")[cov+1], side=2, outer = TRUE, line=2)
attr(opar, "vdir.up")=vdir.up
attr(opar, "vdir.lo")=vdir.lo
invisible(opar)
}
#' Convert empirical structural function to gmEVario format
#'
#' Convert empirical covariance functions or variograms to the format gmEVario
#' of package gmGeostats
#'
#' @param vgemp variogram/covariance function to be converted
#' @param ... further parameters
#'
#' @return the empirical covariance function or variogram, recasted to class
#' \code{gmEVario}. This is a generic function. Methods exist for objects of
#' class \code{logratioVariogram}\code{logratioVariogramAnisotropy}
#' (for compositional data) and \code{gstatVariogram}
#' (from package \code{gstat}).
#' @export
#' @aliases as.gmEVario.gstatVariogram as.gmEVario.logratioVariogram
#' as.gmEVario.logratioVariogramAnisotropy
#'
#' @family gmEVario functions
as.gmEVario <- function(vgemp,...){ UseMethod("as.gmEVario",vgemp)}
as.gmEVario.default <- function(vgemp,...) vgemp
#' @describeIn variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms
#' @export
variogramModelPlot <- function(vg, ...) UseMethod("variogramModelPlot", vg)
#' Quick plotting of empirical and theoretical variograms
#' Quick and dirty plotting of empirical variograms/covariances with or without their models
#' @param vg empirical variogram or covariance function
#' @param model optional, theoretical variogram or covariance function
#' @param col colors to use for the several directional variograms
#' @param commonAxis boolean, should all plots in a row share the same vertical axis?
#' @param newfig boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed
#' @param closeplot logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)?
#' defaults to TRUE
#' @param ... further parameters to underlying plot or matplot functions
#'
#' @return The function is primarily called for producing a plot. However, it
#' invisibly returns the graphical parameters active before the call
#' occurred. This is useful for constructing complex diagrams, by adding layers
#' of info. If you want to "freeze" your plot, embed your call in another
#' call to \code{\link{par}}, e.g. \code{par(variogramModelPlot(...))}; if you
#' want to leave the plot open for further changes give the extra argument `closeplot=FALSE`.
#' @export
#' @family variogramModelPlot
#' @family gmEVario functions
#' @family gmCgram functions
#' @seealso [logratioVariogram()]
#' @method variogramModelPlot gmEVario
#'
#' @examples
#' utils::data("variogramModels")
#' v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5)))
#' v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2))
#' vm = v1+v2
#' plot(vm, closeplot=TRUE)
#' library(gstat)
#' data("jura", package = "gstat")
#' X = as.matrix(jura.pred[,1:2])
#' Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
#' vge = gsi.EVario2D(X,Z)
#' variogramModelPlot(vge, vm)
#'
#'
variogramModelPlot.gmEVario <- function(vg, model = NULL, # gstat or variogramModelList object containing a variogram model fitted to vg
col = rev(rainbow(ndirections(vg))),
commonAxis = FALSE,
newfig = TRUE, closeplot=TRUE, ...){
opar = plot(vg, commonAxis=commonAxis, add=!newfig, col=col, closeplot=is.null(model), ...)
opar = par_remove_readonly(opar)
if(closeplot) on.exit(par(opar))
vdir.lo = attr(opar, "vdir.lo")
vdir.up = attr(opar, "vdir.up")
if(is.null(model))
return(invisible(opar))
# OTHERWISE: add the curves for the model
aux = as.directorVector(attr(vg, "directions"))
if(!is.null(vdir.lo)) vdir.lo = aux[vdir.lo,]
if(!is.null(vdir.up)) vdir.up = aux[vdir.up,]
opar = plot(as.gmCgram(model), vdir.up= vdir.up, vdir.lo= vdir.lo, add=TRUE, cov =FALSE, ...)
#f = as.function(as.gmCgram(gg))
#Dv = dim(vg$gamma)[2]
#dirs = as.directorVector(attr(vg, "directions"))
#Dg = ncol(dirs)
#for(i in 1:Dv){
# for(j in 1:Dv){
# if((i>=j)&(!is.null(vdir.lo))){
# par(mfg=c(i+1,j,Dv+1,Dv+1))
# dirs.lo = dirs[vdir.lo,, drop=F]
# xlim = par()$usr[1:2]
# hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
# Y = outer(hd, 1:nrow(dirs.lo), function(h,k){
# f(rep(0,Dg), dirs.lo[k,]*h)[i,j]
# })
# matlines(hd, Y, col=col[vdir.lo], ...)
# }
# if((i<=j)&(!is.null(vdir.up))){
# par(mfg=c(i,j+1,Dv+1,Dv+1))
# dirs.up = dirs[vdir.up,, drop=F]
# xlim = par()$usr[1:2]
# hd = seq(from=xlim[1], to=xlim[2], length.out = 200)
# Y = outer(hd, 1:nrow(dirs.up), function(h,k){
# f(rep(0,Dg), dirs.up[k,]*h)[i,j]
# })
# matlines(hd, Y, col=col[vdir.up], ...)
# }
# }}
invisible(opar)
}
#' Number of directions of an empirical variogram
#'
#' Returns the number of directions at which an empirical variogram was computed
#'
#' @param x empirical variogram object
#'
#' @return Generic function. It provides the
#' number of directions at which an empirical variogram was computed
#' @export
#' @family gmEVario functions
#' @family gmCgram functions
#' @seealso [logratioVariogram()], [gstat::variogram()]
ndirections <- function(x){ UseMethod("ndirections", x) }
#' @describeIn ndirections generic method
#' @method ndirections default
#' @export
ndirections.default = function(x) nrow(x)
#' @describeIn ndirections method for objects of class "azimuth" (vectors of single angles)
#' @method ndirections azimuth
#' @export
ndirections.azimuth = function(x) length(x)
#' @describeIn ndirections method for objects of class "azimuthInterval" (data.frames of intervals for angles)
#' @method ndirections azimuthInterval
#' @export
ndirections.azimuthInterval = function(x) length(x[[1]])
#' @describeIn ndirections method for empirical logratio variograms with anisotropy
#' @method ndirections logratioVariogramAnisotropy
#' @export
ndirections.logratioVariogramAnisotropy = function(x) ndirections(attr(x,"directions"))
#' @describeIn ndirections method for empirical logratio variograms without anisotropy
#' @method ndirections logratioVariogram
#' @export
ndirections.logratioVariogram = function(x) 1
#' @describeIn ndirections method for empirical gmGeostats variograms
#' @method ndirections gmEVario
#' @export
ndirections.gmEVario = function(x) ndirections(attr(x,"directions"))
#' @describeIn ndirections method for empirical gstat variograms
#' @method ndirections gstatVariogram
#' @export
ndirections.gstatVariogram = function(x){
length(unique(paste(x$dir.hor, x$dir.ver)))
}
#### internal functions -------------
gsi.azimuth = function(x){
class(x) = c("azimuth","directionClass")
return(x)
}
gsi.azimuthInterval = function(x){
class(x) = c("azimuthInterval","directionClass")
return(x)
}
gsi.directorVector = function(x){
if(length(dim(x))!=2) stop("provided director vectors are not a matrix!")
class(x) = c("directorVector", "directionClass")
return(x)
}
print.directionClass = function(x, complete=TRUE, ...){
cat(paste("with",nrow(as.directorVector(x)),"directions\n"))
if(complete){
print(unclass(x), ...)
}
}
as.directorVector <- function(x){ UseMethod("as.directorVector",x) }
#' @method as.directorVector default
as.directorVector.default = function(x,...) x
#' @method as.directorVector azimuth
as.directorVector.azimuth = function(x, D=2){
res = cbind(cos(pi/2-x), sin(pi/2-x))
if(D>2){
res = cbind(res, matrix(0, ncol=D-2, nrow=nrow(res)))
}
colnames(res) = paste("v", 1:ncol(res), sep="")
return(gsi.directorVector(res))
}
#' @method as.directorVector azimuthInterval
as.directorVector.azimuthInterval = function(x, D=2){
res = (x[[1]]+x[[2]])/2
return(as.directorVector.azimuth(res))
}
gsi.lagdists = function(x){
class(x) = c("lagdist","lagClass")
return(x)
}
gsi.lagClass = function(x){
if(length(dim(x))!=2) stop("provided lag classes are not matrix-like!")
class(x) = c("lagClass")
return(x)
}
#' @method print lagClass
print.lagClass = function(x,...){
if(is.list(x)){
print(as.data.frame(unclass(x)), ...)
}else{
print(unclass(x), ...)
}
}
gsi.midValues <- function(x) UseMethod("gsi.midValues",x)
#' @method gsi.midValues default
gsi.midValues.default = function(x) x
#' @method gsi.midValues lagClass
gsi.midValues.lagClass <- function(x){ (x[[1]]+x[[2]])/2 }
#' @method gsi.midValues azimuthIntervals
gsi.midValues.azimuthInterval <- function(x){ (x[[1]]+x[[2]])/2 }
## theoretical structural functions
# S3 -> S4 classes
# cat("creating variogram model classes\n")
# abstract classes
#' @title Structural function model specification
#' @description Abstract class, containing any specification of a variogram (or covariance) model.
#' Members must implement a coercion method to
#' class "gmCgram" (see [setCgram()] for an example), and (possibly) coercion to
#' class "variogramModel" or "variogramModelList" (see [gstat::vgm()])
#' @export
#' @include compositionsCompatibility.R
#' @include gstatCompatibility.R
#' @include preparations.R
setClassUnion(name="ModelStructuralFunctionSpecification",
members=c("NULL","gmCgram", "LMCAnisCompo", "variogramModelList", "variogramModel"))
#
# #### container class --------------
# # An S4 class to represent a Gaussian random field specification
# #
# # @slot structure ModelStructuralFunctionSpecification. Variogram or
# # (generalised) covariance function specification, typically an object
# # obtained from a call to functions such as \code{\link{setCgram}},
# # \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
# # @slot formula formula specifying the structure
# # of dependence of the mean of the random field w.r.to spatial coordinates
# # and/or covariables; typically it will have no left-hand-side term;
# # @slot beta numeric, a vector with as many coefficients as terms the formula
# # above requires for a full specification of the trend; if unknown, these can
# # be NAs, as many as needed.
# #
# # @return A object with the slots populated as given
# # @export
# # @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
# setClass("gmGaussianModel",
# slots = list(structure = "ModelStructuralFunctionSpecification",
# formula="formula",
# beta = "structure")
# )
#
# #setMethod("initialize", signature="gmGaussianModel",
# # def=function(.Object, structure, formula, beta){
# # .Object@formula = formula
# # .Object@beta = beta
# # if(!is.null(structure)) .Object@structure = structure
# # return(.Object)
# # }
# #)
#### container class --------------
# An S4 class to represent a Gaussian random field specification
#
# @slot structure ModelStructuralFunctionSpecification. Variogram or
# (generalised) covariance function specification, typically an object
# obtained from a call to functions such as \code{\link{setCgram}},
# \code{\link{LMCAnisCompo}} or \code{gstat::vgm}.
# @slot formula formula specifying the structure
# of dependence of the mean of the random field w.r.to spatial coordinates
# and/or covariables; typically it will have no left-hand-side term;
# @slot beta numeric, a vector with as many coefficients as terms the formula
# above requires for a full specification of the trend; if unknown, these can
# be NAs, as many as needed.
#
# @return A object with the slots populated as given
# @export
# @seealso [gmSpatialModel-class], and the `make.gm*` functions referenced there
setClass("gmGaussianModel",
slots = list(structure = "ModelStructuralFunctionSpecification",
formula="formula",
beta = "numeric")
)
## empirical structural functions
# S3 -> S4 classes
# cat("creating empirical variogram classes\n")
# abstract classes
#' @title Empirical structural function specification
#' @description Abstract class, containing any specification of an empirical variogram
#' (or covariance function, or variations). Members must implement a coercion method to
#' class "gmEVario" (see [gsi.EVario2D()] for an example), and (possibly) coercion to
#' class "gstatVariogram" (see [gstat::variogram()])
#' @export
#' @include compositionsCompatibility.R
#' @include gstatCompatibility.R
#' @include preparations.R
setClassUnion(name="EmpiricalStructuralFunctionSpecification", members=c("NULL","gmEVario", "logratioVariogram", "logratioVariogramAnisotropy", "gstatVariogram"))