Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#### MAF calculations (2 versions) ----------------
# compute the MAF basis from two matrices of (alr/ilr/clr)-covariance
gsi.getMAFbasis = function(C0, CT, tol=1e-12){
svdT = svd(CT)
A1 = with(svdT, u %*% diag(ifelse(d>tol, 1/sqrt(d), 0)) )
B = t(A1) %*% C0 %*% A1
svdB = svd(B)
o = nrow(svdB$u):1
A = A1[,o] %*% svdB$u[o,]
return(A)
}
gsi.computeExplainedVariance <- function(X, Winv){
rs = sapply(1:ncol(X), function(i) mvar(rmult(outer(X[,i], Winv[i,]))))
return(rs)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @param ... generic functionality arguments
#' @export
Maf = function(x,...) UseMethod("Maf",x)
#' Generalised diagonalisations
#' Calculate several generalized diagonalisations out of a data set and its empirical
#' variogram
#' @param x a data set, typically of class "data.frame" or of a compositional class
#' @param vg empirical variogram, of a kind fitting to the data provided
#' @param i a slicer for the variogram, typically this will be one or more indices of
#' the lag distance to take. %For other options see code{getEmpVariogramSlice}.
#'
#' @return An object extending \code{c("princomp.CLASSOF(x)",}"\code{\link{princomp}}")
#' with classes "\code{genDiag}", and an extra class argument depending on the
#' diagonalisation method chosen.
#'
#' Function \code{Maf} results carry the extra class "\code{maf}", and they correspond
#' to minimum/maximum autocorrelation factors (MAF) as proposed by Switzer and Green
#' (XXXX) or XXXXX (XXXX). In this case, the
#' slicer is typically just the index of one lag distance (defaults to i=2). MAF
#' provides the analytical solution to the joint diagonalisation of two matrices,
#' the covariance of increments provided by the slicing and the conventional covariance
#' matrix (of the idt transformed values, if appropriate). Resulting factors are ordered
#' in decreasing order of spatial continuity, which might produce surprising
#' scree-plots for those who are used to see a screeplot of a principal component analysis.
#'
#' Function \code{UWEDGE} (Uniformly Weighted Exhaustive Diagonalization with Gauss
#' iterations) results carry the extra class "\code{uwedge}". The function
#' is a wrapper on \code{jointDiag::uwedge} from package \code{jointDiag}. In this case the
#' slicer is typically just a subset of indices of lag distances to consider
#' (defaults to the nearest indexes to mininum, maximum and mean lag distances of the
#' variogram). UWEDGE iteratively seeks for a pair of matrices (a mixing and a
#' demixing matrices) diagonalises the set of matrices \eqn{M_1, M_2, \ldots, M_K}
#' given, by minimizing the target quantity
#' \deqn{Q_{uwedge}(A, W) = \sum_{k=1}^K Tr[E_k^t\cdot E_k],}
#' where \eqn{E_k = (W^t\cdot M_k \cdot W- A\cdot \Lambda_k\cdot A^t)} and
#' \eqn{\Lambda_k = diag(W^t\cdot M_k \cdot W)} is the resulting diagonalized version of
#' each matrix. Obtained factors are ordered
#' in decreasing order of spatial continuity, which might produce surprising
#' scree-plots for those who are used to see a screeplot of a principal component analysis.
#'
#' Function \code{RJD} results carry the extra class "\code{rjd}". The function
#' is a wrapper on \code{JADE::rjd}, implementing the Rotational joint diagonalisation method . In this case the
#' slicer is typically just a subset of indices of lag distances to consider
#' (defaults to the nearest indexes to mininum, maximum and mean lag distances).
#' This algorithm also served for quasi-diagonalising a set of matrices as in UWEDGE,
#' just that in this case the quantity to minimise is the sum of sequares of all off-diagonal
#' elements of \eqn{A^t\cdot M_k\cdot A} for all \eqn{k=1, 2, \ldots K}.
#'
#' All these functions produce output mimicking \code{\link{princomp}}, i.e. with
#' elements
#' \describe{
#' \item{sdev}{contrary to the output in PCA, this contains the square root of the
#' metric variance of the predictions obtained for each individual factor; this is the
#' quantity needed for \code{\link{screeplot}} to create plots of explained variance
#' by factor}
#' \item{loadings}{matrix of contributions of each (cdt-transformed) original variable to the new factors}
#' \item{center}{center of the data set (eventually, represented through \code{\link{cdt}}),
#' in compositional methods}
#' \item{scale}{the scalings applied to each original variable}
#' \item{n.obs}{number of observations}
#' \item{scores}{the scores of the supplied data on the new factors}
#' \item{call}{the call to the function (attention: it actually may come much later)}
#' }
#' and additionally some of the following arguments, in different order
#' \describe{
#' \item{invLoadings}{matrix of contributions of each factor onto each original variable}
#' \item{Center}{compositional methods return here the cdt-backtransformed center}
#' \item{InvLoadings}{compositional methods return here the clr-backtransformed inverse loadings, so that
#' each column of this matrix can be understood as a composition on itself}
#' \item{DownInvLoadings}{compositional methods return here the clr-backtransformed "minus inverse loadings", so that
#' each column of this matrix can be understood as a composition on itself; details in
#' \code{\link{princomp.acomp}} }
#' \item{C1, C2}{Maf returns the two matrices that were diagonalised}
#' \item{eigenvalues}{Maf returns the generalized eigenvalues of the diagonalisation of C1 and C2}
#' \item{gof}{UWEDGE returns the values of the goodness of fit criterion across sweeps}
#' \item{diagonalized}{RJD returns the diagonalized matrices, in an array of (K,D,D)-dimensions, being
#' D the number of variables in \code{x}}
#' \item{type}{a string describing which package and which function was used as a workhorse for
#' the calculation}
#' }
#'
#'
#' NOTE: if the arguments you provide to RJD and UWEDGE are not of the appropriate type
#' (i.e. data.frames or equivalent) the default method of these functions will just attempt
#' to call the basis functions JADE:rjd and JointDiag:uwedge respectively.
#' This will be the case if you provide \code{x} as a "\code{matrix}", or as
#' an "\code{array}". In those cases, the output will NOT be structured as an extension
#' to princomp results; instead they will be native output from those functions.
#'
#'
#' @export
#' @method Maf data.frame
#' @aliases genDiag
#'
#' @family generalised Diagonalisations
#'
#' @examples
#' require("magrittr")
#' require("gstat")
#' require("compositions")
#' data("jura", package="gstat")
#' gs = gstat(id="Cd", formula=log(Cd)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Co", formula=log(Cd)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Cr", formula=log(Cr)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Cu", formula=log(Cu)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Ni", formula=log(Ni)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Pb", formula=log(Pb)~1, locations=~Xloc+Yloc, data=jura.pred) %>%
#' gstat(id="Zn", formula=log(Zn)~1, locations=~Xloc+Yloc, data=jura.pred)
#' vg = variogram(gs)
#' mf = Maf(aplus(jura.pred[, -(1:6)]), vg=vg)
#' mf
#' mf$loadings
#' biplot(mf)
Maf.data.frame <- function(x, vg, i=2,...){
cl <- match.call()
C1 = unclass(var(idt(x)))
mn = colMeans(cdt(x))
C2 = 0*C1
## BEGIN: to change in the future to use gmEVario
vg = as.gstatVariogram(vg)
#dists = unique(vg$dist)
#vv = vg[abs(dists[i]-vg$dist)<1e-9*dists[i],]
vv = sapply(split(vg$gamma, vg$id), function(x)x[i])
vv = vv[order(names(vv))]
C2[lower.tri(C2,diag=TRUE)]=vv
dd = diag(diag(C2))
C2 = unclass(C2 + t(C2) - dd)
## END: to change in the future to use gmEVario
dt.centred = scale(x, center = TRUE, scale=FALSE)
eT = eigen(C1)
A1 = with(eT, vectors %*% diag(ifelse(values>1e-12, 1/sqrt(values), 0)) ) ## C1^{-0.5}
B = t(A1) %*% C2 %*% A1
eB = eigen(B)
A2 = eB$vectors
eigenvalues = eB$values
ord = order(eigenvalues)
A2 = A2[, ord]
W = unclass(A1) %*% unclass(A2)
rownames(W) = colnames(x)
# do not normalize
# W = unclass(t(normalize(rmult(t(W)))))
W = unclass(W)
Winv = solve(W)
colnames(Winv) = colnames(W)
facscores = unclass(dt.centred) %*% W
colnames(facscores) = paste("maf", 1:ncol(facscores), sep="")
sdevs = sqrt(gsi.computeExplainedVariance(facscores, Winv))
res = list(sdev=sdevs, loadings = W, center=mn, scale=rep(1, ncol(x)),
n.obs=nrow(x), scores = facscores, C1=C1, C2=C2, eigenvalues = eigenvalues[ord],
invLoadings=Winv)
if(class(x)!="data.frame"){
res$Center = cdtInv(mn)
res$InvLoadings = cdtInv(Winv, orig=x)
res$InvDownLoadings = cdtInv(-Winv, orig=x)
}
res$call = cl
res$type="gmGeostats::MAF"
class(res)= c("maf","genDiag",paste("princomp", class(x), sep="."), "princomp")
return(res)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf rmult
#' @export
Maf.rmult <- Maf.data.frame
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf aplus
#' @export
Maf.aplus <- Maf.data.frame
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf rplus
#' @export
Maf.rplus <- Maf.data.frame
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf ccomp
#' @export
Maf.ccomp <- Maf.data.frame
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf rcomp
#' @export
Maf.rcomp <- function(x, vg, i=2,...){
requireNamespace("compositions", quietly=TRUE)
cl <- match.call()
C1 = unclass(clrvar2ilr(cov(x)))
C2 = unclass(clrvar2ilr(variation2clrvar(vg$vg[i,,])))
clr.centred = scale(cdt(x), center = TRUE, scale=FALSE)
eT = eigen(C1)
A1 = with(eT, vectors %*% diag(ifelse(values>1e-12, 1/sqrt(values), 0)) ) ## C1^{-0.5}
B = t(A1) %*% C2 %*% A1
eB = eigen(B)
A2 = eB$vectors
eigenvalues = eB$values
ord = order(eigenvalues)
A2 = A2[, ord]
W = unclass(A1) %*% unclass(A2)
# do not normalize
#W = unclass(t(normalize(rmult(t(W)))))
Wclr = unclass(t(ilr2clr(t(W))))
rownames(Wclr) = colnames(x)
Winv = solve(W)
Wclr.inv = unclass(ilr2clr(Winv))
colnames(Wclr.inv) = colnames(x)
facscores = unclass(clr.centred) %*% Wclr
colnames(facscores) = paste("maf", 1:ncol(facscores), sep="")
sdevs = sqrt(gsi.computeExplainedVariance(facscores, Wclr.inv))
res = list(sdev=sdevs, loadings = Wclr, center=mean(cdt(x),...), scale=rep(1, ncol(x)),
n.obs=nrow(x), scores = facscores,
C1=C1, C2=C2, eigenvalues = eigenvalues[ord], invLoadings=Wclr.inv,
Center = mean(x, ...),
InvLoadings = cdtInv(Wclr.inv, orig=x),
InvDownLoadings = cdtInv(-Wclr.inv, orig=x),
call = cl, type="gmGeostats::MAF")
kkk = paste("princomp", class(x), sep=".")
class(res)= c("maf","genDiag", kkk, "princomp")
return(res)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method Maf acomp
#' @export
Maf.acomp <- Maf.rcomp
#### UWEDGE calculations ----------
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @export
UWEDGE = function(x,...){
if(!requireNamespace("jointDiag", quietly=FALSE)) stop("UWEDGE requires package 'jointDiag' installed")
UseMethod("UWEDGE",x)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method UWEDGE default
#' @export
UWEDGE.default <- function(x, ...) jointDiag::uwedge(M=x, ...)
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method UWEDGE acomp
#' @export
UWEDGE.acomp <- function(x, vg, i=NULL, ...){
requireNamespace("compositions", quietly=TRUE)
cl <- match.call()
vg = as.logratioVariogram(vg)
if(is.null(i)){
i = c(1, floor(c(0.5,1)*dim(vg$vg)[1]))
}
V = loadings(princomp(x))
C1 = clrvar2ilr(cov(x), V = V)
d = ncol(x)-1
M = -0.5*apply(vg$vg[c(1,i),,], 1, clrvar2ilr, V=V )
dim(M)=c(d,d,length(i)+1)
M[,,1]=C1
res = jointDiag::uwedge(M)
ord = order(diag(res$B %*% M[,,length(i)] %*% t(res$B)))
res$B = res$B[ord,]
W = t(res$B)
# do not normalize
# W = unclass(t(normalize(rmult(t(W)))))
W = unclass(W)
ilrx = ilr(x, V=V)
mns = mean(ilrx)
ilrxc = ilrx-mns
facscores = unclass(ilrxc) %*% W
Wclr = V %*% W
rownames(Wclr) = colnames(x)
colnames(Wclr) <- paste("uwedge", 1:d, sep="")
Wclr.inv = gsiInv(Wclr)
colnames(Wclr.inv) = colnames(x)
colnames(facscores) <- paste("uwedge", 1:d, sep="")
sdevs = sqrt(gsi.computeExplainedVariance(facscores, Wclr.inv))
out = list(sdev=sdevs, loadings = Wclr, center=mean(cdt(x)),
scale=rep(1, ncol(x)),
n.obs=nrow(x), scores = facscores,
gof=res$criter, invLoadings=Wclr.inv,
Center = mean(x),
InvLoadings = cdtInv(Wclr.inv, orig=x),
InvDownLoadings = cdtInv(-Wclr.inv, orig=x),
call = cl, type="jointDiag::uwedge")
kkk = paste("princomp", class(x), sep=".")
class(out)= c("uwedge","genDiag", kkk, "princomp")
return(out)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method UWEDGE rcomp
#' @export
UWEDGE.rcomp <- UWEDGE.acomp
### RJD calculation -----------------------
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @export
RJD = function(x,...){
if(!requireNamespace("JADE", quietly=FALSE)) stop("RJD requires package 'JADE' installed")
UseMethod("RJD",x)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method RJD default
#' @export
RJD.default <- function(x, ...){
JADE::rjd(X=x, ...)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method RJD acomp
#' @export
RJD.acomp <- function(x, vg, i=NULL, ...){
requireNamespace("compositions", quietly=TRUE)
cl <- match.call()
vg = as.logratioVariogram(vg)
if(is.null(i))
i = c(1, floor(c(0.5,1)*dim(vg$vg)[1]))
d = ncol(x)-1
i = sort(i,decreasing=TRUE)
V = loadings(princomp(x))
M = -0.5*apply(vg$vg[i ,,], 1, clrvar2ilr, V=V )
dim(M)=c(d,d,length(i))
res = JADE::rjd(M)
res$B = t(res$V)
ord = order(diag(res$B %*% M[,,2] %*% t(res$B)))
res$B = res$B[ord,]
W = t(res$B)
# do not normalize
# W = unclass(t(normalize(rmult(t(W)))))
W = unclass(W)
ilrx = ilr(x, V=V)
mns = mean(ilrx)
ilrxc = ilrx-mns
facscores = unclass(ilrxc) %*% W
Wclr = V %*% W
rownames(Wclr) = colnames(x)
Wclr.inv = t(Wclr)
colnames(Wclr.inv) = colnames(x)
sdevs = sqrt(gsi.computeExplainedVariance(facscores, Wclr.inv))
o = order(sdevs, decreasing = TRUE)
Wclr = Wclr[,o]
facscores = facscores[,o]
Wclr.inv = Wclr.inv[o,]
colnames(Wclr) <- rownames(Wclr.inv) <- paste("rjd", 1:d, sep="")
colnames(facscores) <- paste("rjd", 1:d, sep="")
out = list(sdev=sdevs[o], loadings = Wclr, center=mean(cdt(x)),
scale=rep(1, ncol(x)),
n.obs=nrow(x), scores = facscores,
diagonalized = res$D[o,o,], invLoadings=Wclr.inv,
Center = mean(x),
InvLoadings = cdtInv(Wclr.inv, orig=x),
InvDownLoadings = cdtInv(-Wclr.inv, orig=x),
call = cl, type="JADE::rjd")
kkk = paste("princomp", class(x), sep=".")
class(out)= c("rjd","genDiag", kkk, "princomp")
return(out)
}
#' @describeIn Maf.data.frame Generalised diagonalisations
#' @method RJD rcomp
#' @export
RJD.rcomp <- RJD.acomp
### genDiag methods ----
#' Predict method for generalised diagonalisation objects
#'
#' @param object a generalized diagonalisation object, as obtained from a call to
#' \code{\link{Maf}}, and on the same page, information on the other diagonalisation
#' methods \code{UWEDGE} or \code{RJD}
#' @param newdata a matrix or data.frame of factor scores to convert back to the original
#' scale (default: the scores element from `object`)
#' @param ... not used, kept for generic compatibility
#'
#' @return A data set or compositional object of the nature of the original data
#' used for creating the genDiag object.
#' @export
#' @family generalised Diagonalisations
#' @examples
#' data("jura", package="gstat")
#' juracomp = compositions::acomp(jura.pred[, -(1:6)])
#' lrvg = logratioVariogram(data=juracomp, loc=jura.pred[,1:2])
#' mf = Maf(juracomp, vg=lrvg)
#' mf
#' biplot(mf)
#' predict(mf)
#' unclass(predict(mf)) - unclass(juracomp) # predict recovers the original composition
predict.genDiag = function (object, newdata=NULL, ...) {
requireNamespace("compositions", quietly=TRUE)
if(is.null(newdata))
newdata = object$scores
if("data.frame" %in% class(newdata))
newdata = as.matrix(newdata)
Z = newdata %*% unclass(object$invLoadings)
if("Center" %in% names(object)){
Z = cdtInv(Z, orig = object$Center) + object$Center
}else{
Z = Z + outer(rep(1, nrow(Z)), object$center)
Z = data.frame(Z)
colnames(Z) = names(object$center)
}
return(Z)
}
#' Colored biplot for gemeralised diagonalisations
#' Colored biplot method for objects of class genDiag
#' @param x a generalized diagonalisation object, as obtained from a call to
#' \code{\link{Maf}} (or to \code{UWEDGE} or \code{RJD}, on the help page of \code{\link{Maf}}).
#' @param choices which factors should be represented? vector of 2 indices; defaults to
#' c(1,2)
#' @param scale deprecated, kept for coherence with \code{link{biplot.princomp}}
#' @param pc.biplot same as the homonimous argument from \code{link{biplot.princomp}}:
#' boolean, to scale variables down by sqrt(n) and observations up by the same factor.
#' @param ... further arguments to \code{\link{coloredBiplot}}
#'
#' @return nothing. Function is called exclusively to produce the plot
#' @export
#' @family generalised Diagonalisations
#' @importFrom compositions coloredBiplot
#' @method coloredBiplot genDiag
#'
#' @examples
#' data("jura", package="gstat")
#' juracomp = compositions::acomp(jura.pred[, -(1:6)])
#' lrvg = logratioVariogram(data=juracomp, loc=jura.pred[,1:2])
#' mf = Maf(juracomp, vg=lrvg)
#' mf
#' compositions::coloredBiplot(mf, xlabs.col=as.integer(jura.pred$Rock)+2)
coloredBiplot.genDiag <- function(x, choices = 1:2, scale=0, pc.biplot=FALSE, ...){
if(length(choices) != 2) stop("length of choices must be 2")
if(!length(scores <- x$scores))
stop(gettextf("object '%s' has no scores", deparse(substitute(x))),
domain = NA)
lam <- rep(1, along.with=choices)
if(is.null(n <- x$n.obs)) n <- 1
lam <- lam * sqrt(n)
if(scale < 0 || scale > 1) warning("'scale' is outside [0, 1]")
if(scale != 0) lam <- lam^scale else lam <- 1
if(pc.biplot) lam <- lam / sqrt(n)
coloredBiplot.default(t(t(scores[,choices]) / lam),
t(x$invLoadings[choices,] * lam), ...)
invisible()
}